thanks again; The conductor is aluminum (a good electrical conductor). (* Why neglects the component of z?)
So that at the end we have the component of x on account of the motion along the y-axis.
The conductor is thick (its dimensions 50 * 140 * 10 mm3).
And also the skin effect was neglected...
thanks again; The conductor is aluminum (a good electrical conductor). (* Why neglects the component of z?)
So that at the end we have the component of x on account of the motion along the y-axis.
The conductor is thick (its dimensions 50 * 140 * 10 mm3).
And also the skin effect was neglected...
Ok well I understood this, thank you very much ^ _ ^. Else, for me, since we have a massive volume of conductor, when it moves in the direction of the y-axis, we will have zero currents in the y-axis, that is to say we will have the components Jx and Jz. Only the law of E = the velocity Vy...
Please explain to me more clearly because I did not quite understand. And I will be very grateful.
You find below the link of the PDF file which I do the work in.
http://files.engineering.com/getfile.aspx?folder=87e47637-a55b-4229-9fb8-a7684be19dbb&file=dbFamilyCID5.pdf
Hello MagBen, thank you very much on your suite, I inserted a file of type rar, which contains my work simulation, on the software flux2D cedrat, which did not work.
You can consult the pdf file that contains the simulation device.
If you like, you can tell me the shape of the currents induced...
Hello everyone.
I encountered a problem in my simulation by the software flux2D and I could not find a solution.
I made a simulation of a conductive plate which moves between two permanent elements to see the currents induced on this plate.
After the realization of the geometry, the automatic...