At first you can calculate the cable resistance and capacitance. The cable resistance at 90oC [at 35 kV for a EPR insulated cable] will be Ploss/3/I^2. Ploss=10-9.3=0.7 MW.
The current will be the average of 212 and 250 A[231 A] R=4.37 ohm R/123=0.035551 ohm/kft
For 20oC R20oC=0.035551*(234.5+20)/(234.5+90)= 0.027882 ohm/kft=0.09147572 ohm/km
R=1/58*1000/SCU ohm/km scu==conductor cross section area [mm^2]
scu=1000/58/R=188 mm^2 [371 kcml]
You may take 3 cables of 350 MCM copper conductor EPR insulated 35 kV[single core].
90oC underground Table 310.60(C)(77) Det.1 -35 kV 90oC 390 A and Table 9 350 kcmls R=0.125 ohm/km at [60 Hz 75oC].
If 90-20=70oC for Tc=90oC and 390 A then DT=(231/390)^2*70=24.5 oC. Let’s say DT=30oC Tc=30+20=50 the resistance will be (234.5+50)/(234.5+75)*0.125=0.114903069 ohm/km [0.0350022 ohm/kft].
Ploss=3*0.0350022*231^2*123/10^6=6.895 MW
Conductor diameter 0.616 in.
The shield diameter has to be 0.62+2*0.42+0.01=1.47 in.
The overall diameter is 2.00” approx.
Cap=3.4/18/ln(1.47/0.616)=0.2172 μF/km [or 0.0662 μF/kft]
If the phase cables are in triangle configuration then
XL=2*pi*60 *(0.2*ln(2*2/0.616)+0.0528)/10^3 ohm/km
XL=0.049002261 ohm/kft
XC=10^6/(2*PI*60*0.0662)=40069 ohm/kft
The inductive reactive power will be QL=3*XL*I^2*123 [I=(212+250)/2=231A]
QL=0.956 MVAr
QC=32.5^2/40069*123=3.242 MVAr
Then Qb=7.1+3.242-0.956=9.38 MVAr
For recalculation of Vs and Is from Vr and Ir the IEEE 141 formula it not good enough.
You need the general formula of a transmission line :
Vs=Vr*ch(g)+Ir*Z*sh(g)
Is=Ir*ch(g)+Ur/Z*sh(g) where:
g=γ*length
γ=√[(R+jωL)x(G+jωCap)] and Z=√[(R+jωL)

G+jωCap)]
ch=coshyperbolic
sh=sinhyperbolic
R=0.027882 ; ωL=XL=0.0490022; ωCap=1/XC=2.49568E-05 ;G=0
Vs=32.49;Is=214