The term knock-down factor is commonly used to describe the reduction in fatigue life in a corrosive environment (e.g. sour service) compared to performance in air. However, the mere concept of such a reduction factor is potentially misleading, particularly when comparing different welding procedures that demonstrate different in-air performance.
To demonstrate the performance of girth welds in a corrosive environment, strip fatigue tests are conducted in air and in a simulated service environment, to determine an appropriate knock-down factor, which is then applied to the base design curve. However, there are a number of ways that such knock-down factors can be calculated, with different degrees of conservatism. For example, two different welding procedures may exhibit a different fatigue performance in air, but a similar performance when tested in a sour environment. The better performing weld (in air) is therefore assigned a greater knock-down factor, and possibly a more stringent sour design curve. In other instances, fatigue performance in air may significantly exceed that required. The determined knock-down factor, between strip tests in air and in a sour environment, can then be very large. Applying this reduction factor to the design curve results in a very stringent sour design curve, and may penalize the use of a girth welding procedure that results in good in-air fatigue performance.
There are no explicit, published guidelines for calculating corrosion fatigue knock-down factors.[/tt]
Ahmad Hajeer, PMP, MBA