Trajano
New member
- Nov 8, 2006
- 20
Good morning/evening, Sirs
I am thinking of the effect of local stress concentrations on the strength of the metal parts. In order to clarify my ideas, I have thought of a simple test:
Let's imagine we have a test specimen A (made of aluminium, or steel) with a rectangular section of width "a" and thickness "t". The length is "l".
In the center of the length there are two notches, depth "n", therefore the minimum net section is b = (a-2n)*t.
Let's have a second test specimen B (same material), with a rectangular secion of width b = a-2n and thickness "t". The length is also "l". No notches this time.
Therefore the minimum net section in both specimes is the same
1. If we did a tension testing, what would happen? Both specimens would fail at the same load level, or the stress concentration around the notches would induce an earlier failure in Specime A?
2. Do you think the relative effect of the notches depends on the ratio b/a?
What do you think?
I am thinking of the effect of local stress concentrations on the strength of the metal parts. In order to clarify my ideas, I have thought of a simple test:
Let's imagine we have a test specimen A (made of aluminium, or steel) with a rectangular section of width "a" and thickness "t". The length is "l".
In the center of the length there are two notches, depth "n", therefore the minimum net section is b = (a-2n)*t.
Let's have a second test specimen B (same material), with a rectangular secion of width b = a-2n and thickness "t". The length is also "l". No notches this time.
Therefore the minimum net section in both specimes is the same
1. If we did a tension testing, what would happen? Both specimens would fail at the same load level, or the stress concentration around the notches would induce an earlier failure in Specime A?
2. Do you think the relative effect of the notches depends on the ratio b/a?
What do you think?