Irenicus
Marine/Ocean
- Aug 18, 2014
- 3
Hi dear reader,
I'm a marine engineer and I have a question about my fuel. Our fuel is following the ISO 8217:2010 standard, which speaks of maximum allowance of fuel contamination. Onboard my vessel we're using HFO.
The iso standard says I'm allowed to have up to 300 ppm of Vanadium in my HFO fuel. Now lets take for this example that the standard consumption of fuel is a constant of 100 m³ per week. If I have fuel of 100 ppm does that mean that the damage caused to my engine take 3 times as long as it would for fuel with 300 ppm of Vanadium?
The expected reaction is high temperature corrosion, especially considering that the exhaust line has temperature of 600°C. Take into account that this is a marine engine so high sodium values in the air can be expected. Now I quote: "sodium vanadyl vanadate 5Na2 O. V2O5 . 11 V2 O5 melts at 545 °C. Liquid deposits formed in this way flux the protective oxide layers on structural alloys, making them vulnerable to rapid corrosion." (ref.
A lot of damage can be expected at my piston crown, turbo charger, exhaust seats & valves and exhaust pipelines, therefor this information is interesting to me. Anybody that knows and can explain the answer to my question? Thanks in advance!
I'm a marine engineer and I have a question about my fuel. Our fuel is following the ISO 8217:2010 standard, which speaks of maximum allowance of fuel contamination. Onboard my vessel we're using HFO.
The iso standard says I'm allowed to have up to 300 ppm of Vanadium in my HFO fuel. Now lets take for this example that the standard consumption of fuel is a constant of 100 m³ per week. If I have fuel of 100 ppm does that mean that the damage caused to my engine take 3 times as long as it would for fuel with 300 ppm of Vanadium?
The expected reaction is high temperature corrosion, especially considering that the exhaust line has temperature of 600°C. Take into account that this is a marine engine so high sodium values in the air can be expected. Now I quote: "sodium vanadyl vanadate 5Na2 O. V2O5 . 11 V2 O5 melts at 545 °C. Liquid deposits formed in this way flux the protective oxide layers on structural alloys, making them vulnerable to rapid corrosion." (ref.
A lot of damage can be expected at my piston crown, turbo charger, exhaust seats & valves and exhaust pipelines, therefor this information is interesting to me. Anybody that knows and can explain the answer to my question? Thanks in advance!