Superossido93
Industrial
- Mar 6, 2020
- 14
Hi to everybody.
I am in a bit of a problem for calculating the various convective coefficients for the heat transfer through two lenses made of sapphire.
I have to create a window that will let a thermal camera see into the medium pressure stage (and later i will do the same study for the high pressure stage) of a Steam Turbine. The window will be created in a sort of hollow point of the outer casing, so I can conclude, or approximate, that the steam that pass there is immobile. So near the first lens the velocity of the steam is zero.
Now, i attach an image for better undestanding.
Data is:
lenses made of Sapphire (Al2O3) of Diameter 64mm.
The lenses are clamped, so the usable diameter is 54mm
T1=271,9 °C p1=5,752 bara
x1=12mm
cavity filled with air at p=pamb, later filled with nitrogen at p=pamb
x2=8mm
T2=20°C, p2=pamb
Now, as first approximation(after the immobile steam near the first lens) I can resolve my problem as a 1 Dimension Steady State (in the end I will use the thermal camera always in steady state).
How do i calculate the three convective coefficients?
Thanks in advance
I am in a bit of a problem for calculating the various convective coefficients for the heat transfer through two lenses made of sapphire.
I have to create a window that will let a thermal camera see into the medium pressure stage (and later i will do the same study for the high pressure stage) of a Steam Turbine. The window will be created in a sort of hollow point of the outer casing, so I can conclude, or approximate, that the steam that pass there is immobile. So near the first lens the velocity of the steam is zero.
Now, i attach an image for better undestanding.
Data is:
lenses made of Sapphire (Al2O3) of Diameter 64mm.
The lenses are clamped, so the usable diameter is 54mm
T1=271,9 °C p1=5,752 bara
x1=12mm
cavity filled with air at p=pamb, later filled with nitrogen at p=pamb
x2=8mm
T2=20°C, p2=pamb
Now, as first approximation(after the immobile steam near the first lens) I can resolve my problem as a 1 Dimension Steady State (in the end I will use the thermal camera always in steady state).
How do i calculate the three convective coefficients?
Thanks in advance