Eng-Tips is the largest engineering community on the Internet

Intelligent Work Forums for Engineering Professionals

  • Congratulations waross on being selected by the Tek-Tips community for having the most helpful posts in the forums last week. Way to Go!

Modeling pv module using FDM (implicit scheme) 1

Status
Not open for further replies.

pkladisios

Mechanical
May 19, 2015
2
0
0
GR
Greetings. I am currently trying to model a photovoltaic module, mounted on a roof, using an implicit scheme of FDM (finite difference method). My primary concern is the boundary conditions. To be more precise, assuming a one dimensional heat flow, the heat diffusion equation is ∂T/∂t=(k/ρCp)∂[sup]2[/sup]T/∂x[sup]2[/sup].

Internal nodes
Applying the implicit scheme to the heat diffusion equation leads us to the following equation, valid for internal nodes:
(-kdt/ρCpdx[sup]2[/sup])T[sub]i-1[/sub][sup]p+1[/sup]+(1+2kdt/ρCpdx[sup]2[/sup])T[sub]i[/sub][sup]p+1[/sup]+(-kdt/ρCpdx[sup]2[/sup])T[sub]i+1[/sub][sup]p+1[/sup]=T[sub]i[/sub][sup]p[/sup]

6q8idl.jpg


Boundary conditions
Upper surface (i=0)
Q[sub]sol[/sub]-Q[sub]conv[/sub]-Q[sub]rad[/sub]=Q[sub]cond[/sub]→-k(T[sub]1[/sub][sup]p+1[/sup]-T[sub]0[/sub][sup]p+1[/sup])/dx=Q[sub]sol[/sub][sup]p+1[/sup]-Q[sub]conv[/sub][sup]p+1[/sup]-Q[sub]rad[/sub][sup]p+1[/sup]→-k(T[sub]1[/sub][sup]p+1[/sup]-T[sub]0[/sub][sup]p+1[/sup])/dx=Q[sub]sol[/sub][sup]p+1[/sup]-h[sub]c[/sub](T[sub]0[/sub][sup]p+1[/sup]-T[sub]air[/sub][sup]p+1[/sup])-εσ([sup]Τ[sub]0[/sub][sup]p+1[/sup]4[/sup]-[sup]T[sub]air[/sub][sup]p+1[/sup]4[/sup])

Lower surface (i=n-1)
Q[sub]cond[/sub]=Q[sub]conv[/sub]+Q[sub]rad[/sub]→-k(T[sub]n-1[/sub][sup]p+1[/sup]-T[sub]n-2[/sub][sup]p+1[/sup])/dx=Q[sub]conv[/sub][sup]p+1[/sup]-Q[sub]rad[/sub][sup]p+1[/sup]→-k(T[sub]n-1[/sub][sup]p+1[/sup]-T[sub]n-2[/sub][sup]p+1[/sup])/dx=h[sub]c[/sub](T[sub]n-1[/sub][sup]p+1[/sup]-T[sub]air[/sub][sup]p+1[/sup])-εσ([sup]Τ[sub]n-1[/sub][sup]p+1[/sup]4[/sup]-[sup]T[sub]air[/sub][sup]p+1[/sup]4[/sup])

where:
Q[sub]sol[/sub]: insolation
Q[sub]conv[/sub]: convective heat losses
Q[sub]rad[/sub]: radiative heat losses

k: thermal conductivity
Cp: specific heat capacity
ρ: density
ε: emissivity
σ: Stefan-Boltzmann constant
T: temperature

Subscripts:
Spatial i=0,1,...,n-1
Temporal p=0,1,...,m-1

My questions are:
Am i right so far? If i am, what happens when unknown temperatures to the power of four are inserted into the system of equations? Do i assume an overall/combined coefficient h=h[sup]conv[/sup]+h[sup]rad[/sup] to linearize the radiation factor (Q[sub]rad[/sub]+Q[sub]conv[/sub])=h(T[sub]surface[/sub]-T[sub]air[/sub])? I really need help on this one.

Thank you in advance and i apologise for any unclarities.
 
Replies continue below

Recommended for you

Simply the math and the model. By far the greatest heat loss will usually be convective, unless you have attached some thermal jacketing. I'd leave out the conduction and radiation losses for now. See how well that matches actual performance then decide about adding them back in, if and when you need to.
 
Status
Not open for further replies.
Back
Top