Eng-Tips is the largest engineering community on the Internet

Intelligent Work Forums for Engineering Professionals

  • Congratulations waross on being selected by the Eng-Tips community for having the most helpful posts in the forums last week. Way to Go!

Pacejka coefficents for lateral dynamics

Status
Not open for further replies.

Ferdox

Industrial
Jul 4, 2013
1
Hi guys!

I'm trying to get the 4 Paramaters (B,C,D,E) for the magic formula of Pacejka, which discribes the lateral behaviour of the tire.

I got a complex dataset called pacejka 4.2 but i don't know how to use it.

Can you help me?


You can see the dataset below.

$ $Id: MF_205_60R15_V91.tir,v 1.1.1.1 2011/01/31 13:57:32 fh Exp $
$---------------------------------------------------------------------MDI_HEADER

[MDI_HEADER]
FILE_TYPE = 'tir'
FILE_VERSION = 3.0
FILE_FORMAT = 'ASCII'

(COMMENTS)
{comment_string}
'Tire MF52 205/60R15 91V, 2.2bar
'Version 23/07/2010
'
$--------------------------------------------------------------------------units
[UNITS]
LENGTH ='meter'
FORCE ='newton'
ANGLE ='radians'
MASS ='kg'
TIME ='second'
$--------------------------------------------------------------------------model
[MODEL]
PROPERTY_FILE_FORMAT ='MF_05' $ ADAMS property file format
USE_MODE = 14 $ tire use switch
$FITTYP = 5 $ magic formula version number
$MFSAFE1 = 0 $
$MFSAFE2 = 0 $
$MFSAFE3 = 0 $
$----------------------------------------------------------------------dimension
[DIMENSION]
UNLOADED_RADIUS = 0.3185 $ free tire radius
WIDTH = 0.205 $ nominal tire width
RIM_RADIUS = 0.1905 $ rim radius
RIM_WIDTH = 0.1524 $ rim width
ASPECT_RATIO = 0.60 $ aspect ratio
$-----------------------------------------------------------------------vertical
[VERTICAL]
VERTICAL_STIFFNESS = 236700 $ tire vertical stiffnesss
VERTICAL_DAMPING = 50 $ tire vertical damping
BREFF = 5.0 $ low load stiffness eff. rolling radius
DREFF = 0.3 $ peak value of eff. rolling radius,
FREFF = 0.1 $ high load stiffness eff. rolling radius
FNOMIN = 6500 $ nominal wheel load
$----------------------------------------------------------------long_slip_range
[LONG_SLIP_RANGE]
KPUMIN = -0.30 $ Minimum longitudinal slip
KPUMAX = 0.30 $ Maximum longitudinal slip
$---------------------------------------------------------------slip_angle_range
[SLIP_ANGLE_RANGE]
ALPMIN = -0.1745 $ Minimum side slip angle
ALPMAX = 0.1745 $ Maximum side slip angle
$---------------------------------------------------------inclination_slip_range
[INCLINATION_ANGLE_RANGE]
CAMMIN = -0.1047 $ Minimum inclination angle
CAMMAX = 0.1047 $ Maximum inclination angle
$-----------------------------------------------------------vertical_force_range
[VERTICAL_FORCE_RANGE]
FZMIN = 400.0 $ Minimum wheel load
FZMAX = 8500.0 $ Maximum wheel load
$------------------------------------------------------------------------scaling
[SCALING_COEFFICIENTS]
LFZO = 1 $ scale factor of nominal (rated) load
LCX = 1 $ scale factor of Fx shape factor
LMUX = 1 $ scale factor of Fx peak friction coefficient
LEX = 1 $ scale factor of Fx curvature factor
LKX = 1 $ scale factor of Fx slip stiffness
LHX = 1 $ scale factor of Fx horizontal shfit
LVX = 1 $ scale factor of Fx vertical shift
LGAX = 1 $ scale factor of camber for Fx
LCY = 1 $ scale factor of Fy shape factor
LMUY = 1 $ scale factor of Fy peak friction coefficient
LEY = 1 $ scale factor of Fy curvature factor
LKY = 1 $ scale factor of Fy cornering stiffness
LHY = 1 $ scale factor of Fy horizontal shift
LVY = 1 $ scale factor of Fy vertical shift
LGAY = 1 $ scale factor of camber for Fy
LTR = 1 $ scale factor of peak of pneumatic trail
LRES = 1 $ scale factor for offset of residual torque
LGAZ = 1 $ scale factor of camber for Mz
LXAL = 1 $ scale factor of alpha infulence on Fx
LYKA = 1 $ scale factor of kappa influence on Fy
LVYKA = 1 $ scale factor of kappa induced Fy
LS = 1 $ scale factor of Mz moment arm of Fx
LSGKP = 1 $ scale factor of relaxation length of Fx
LSGAL = 1 $ scale factor of relaxation length of Fy
LGYR = 1 $ scale factor of gyroscopic torque
LMX = 1 $ scale factor of overturning couple stiffness
LVMX = 1 $ scale factor of Mx vertical shift
LMY = 1 $ scale factor of rolling resistance torque
$-------------------------------------------------------------------longitudinal
[LONGITUDINAL_COEFFICIENTS]
PCX1 = 1.6055 $ shape factor Cfx for longitudinal force
PDX1 = 1.1703 $ longitudinal friction Mux at FzNom
PDX2 = -0.081328 $ variation of friction Mux with load
PDX3 = 0 $ variation of friction Mux with camber
PEX1 = 0.53409 $ longitudinal curvature Efx at FzNom
PEX2 = -0.019956 $ variation of curvature Efx with load
PEX3 = 0.18089 $ variation of curvature Efx with squared load
PEX4 = 2.9951e-07 $ factor in curvature Efx while driving
PKX1 = 36.411 $ longitudinal slip stiffness Kfx/Fz at FzNom
PKX2 = 0.12615 $ variation of slip stiffness Kfx/Fz with load
PKX3 = 0.51289 $ exponent in slip stiffness Kfx/Fz with load
PHX1 = 0 $ horizontal shift Shx at Fznom
PHX2 = 0 $ variation of shift Shx with load
PVX1 = 0 $ vertical shift Svx/Fz at FzNom
PVX2 = 0 $ variation of shift Svx/Fz with load
RBX1 = 18.456 $ slope factor for combined slip Fx reduction
RBX2 = 16.314 $ variation of slope Fx reduction with Kappa
RCX1 = 1.091 $ shape factor for combined slip Fx reduction
REX1 = 0 $ curvature factor of combined Fx
REX2 = 0 $ curvature factor of combined Fx with load
RHX1 = 0.0058715 $ shift factor for combined slip Fx reduction
PTX1 = 1.5 $ relaxation length Sig_Kappa/Fz at FzNom
PTX2 = 0.180096 $ variation of Sig_Kappa/Fz with load
PTX3 = -0.15 $ variation of Sig_Kappa/Fz with exponent of load
$--------------------------------------------------------------------overturning
[OVERTURNING_COEFFICIENTS]
QSX1 = 2.3155e-04 $ lateral force induced overturning couple
QSX2 = 0.51574 $ camber induced overturning couple
QSX3 = 0.046399 $ Fy induced overturning couple
$------------------------------------------------------------------------lateral
[LATERAL_COEFFICIENTS]
PCY1 = 2.1322 $ shape factor Cfy for lateral forces
PDY1 = 1.0283 $ lateral friction Muy at FzNom
PDY2 = -0.16758 $ variation of friction Muy with load
PDY3 = -1.5821 $ variation of friction Muy with squared camber
PEY1 = 0.33443 $ lateral curvature Efy at FzNom
PEY2 = -1.8733 $ variation of curvature Efy with load
PEY3 = -0.13136 $ zero order camber dependency of curvature Efy
PEY4 = -11.677 $ variation of curvature Efy with camber
PKY1 = -20.505 $ maximum value of stiffness Kfy/FzNom
PKY2 = 2.0284 $ load at which Kfy reaches maximum value
PKY3 = 0.89994 $ variation of Kfy/Fznom with camber
PHY1 = 0.0031377 $ horizontal shift Shy at FzNom
PHY2 = 0.00051596 $ variation of shift Shy with load
PHY3 = 0.039251 $ variation of shift Shy with camber
PVY1 = 0.026365 $ vertical shift in Svy/Fz at FzNom
PVY2 = -0.0062119 $ variation of shift Svy/Fz with load
PVY3 = -0.41389 $ variation of shift Svy/Fz with camber
PVY4 = -0.048038 $ variation of shift Svy/Fz with camber and load
RBY1 = 22.003 $ slope factor for combined Fy reduction
RBY2 = -13.623 $ variation of slope Fy reduction with Alpha
RBY3 = -0.0093616 $ shfit term for alpha in slope Fy reduction
RCY1 = 0.98294 $ shape factor for combined Fy reduction
REY1 = 0 $ Curvature factor of combined Fy
REY2 = 0 $ Curvature factor of combined Fy with load
RHY1 = -9.1492e-11 $ shift factor for combined Fy reduction
RHY2 = 0 $ shift factor for combined Fy reduction with load
RVY1 = 22.965 $ kappa induced side force Svyk/Muy*Fz at FzNom
RVY2 = 0.37981 $ variation of Svyk/Muy*Fz with load
RVY3 = 1.8552 $ variation of Svyk/Muy*Fz with camber
RVY4 = 0.08767 $ variation of Svyk/Muy*Fz with alpha
RVY5 = -8.8234e-11 $ variation of Svyk/Muy*Fz with kappa
RVY6 = 0.90374 $ variation of Svyk/Muy*Fz with atan(kappa)
PTY1 = 1.75 $ peak value of relaxation length Sig_Alpha
PTY2 = 1.35 $ shape factor for Sig_alpha
$------------------------------------------------------------------------rolling
[ROLLING_COEFFICIENTS]
QSY1 = 0.01 $ rolling resistance torque coefficient
QSY2 = 0.0 $ rolling resistance torque depending on Fx
QSY3 = 0.0 $ rolling resistance torque depending on speed
QSY4 = 0.0 $ rolling resistance torque depending on speed ^4
$-----------------------------------------------------------------------aligning
[ALIGNING_COEFFICIENTS]
QBZ1 = 19.588 $ trail slope factor for trail Bpt at FzNom
QBZ2 = -4.1671 $ variation of slope Bpt with load
QBZ3 = -0.34132 $ variation of slope Bpt with squared load
QBZ4 = -0.023607 $ variation of slope Bpt with camber
QBZ5 = -0.0793 $ variation of slope Bpt with absolute camber
QBZ9 = -50.0 $ slope factor Br of residual torque Mzr
QBZ10 = 0.000 $ slope factor Br of residual torque Mzr
QCZ1 = 1.2012 $ shape factor Cpt for pneumatic trail
QDZ1 = 0.12819 $ peak trail Dpt'' = Dpt*(Fz/FzNom*R0)
QDZ2 = -0.0052433 $ variation of peak Dpt'' with load
QDZ3 = -0.099544 $ variation of peak Dpt'' with camber
QDZ4 = -15.0 $ variation of peak Dpt'' with squared camber
QDZ6 = 6.2499e-05 $ peak resisual torque Dmr'' = Dmr*(Fz*R0)
QDZ7 = 5.0135e-04 $ variation of peak factor Dmr'' with load
QDZ8 = -0.28564 $ variation of peak factor Dmr'' with camber
QDZ9 = -0.025056 $ variation of peak factor Dmr'' with camber and load
QEZ1 = -0.0044308 $ trail curvature Ept at FzNom
QEZ2 = 0.022579 $ variation of curvature Ept with load
QEZ3 = -0.16199 $ variation of curvature Ept with squared load
QEZ4 = -0.5576 $ variation of curvature Ept with sign of Alpha-t
QEZ5 = -87.296 $ variation of curvature Ept with camber and sign Alpha-t
QHZ1 = 8.2436e-04 $ trail horizontal shift Sht at FzNom
QHZ2 = 0.002733 $ variation of shift Sht with load
QHZ3 = 0.15 $ variation of shift Sht with camber
QHZ4 = 0.11608 $ variation of shift Sht with camber and load
SSZ1 = -5.3899e-10 $ nominal value of s/R0 effect of Fx on Mz
SSZ2 = -2.2371e-09 $ variation of distance s/R0 with Fy/FzNom
SSZ3 = 3.6029e-08 $ variation of distance s/R0 with camber
SSZ4 = 3.9826e-08 $ variation of distance s/R0 with camber and load
QTZ1 = 0.3 $ gyroscopic torque constant
MBELT = 7.5 $ belt mass of wheel
 
Replies continue below

Recommended for you

So do you have Pacejka's book, or the adams tire help files? I can't tell which pac formula that is, I'm guessing 2002 or later but for BCDE that doesn't matter as the models are backwards compatible.

if you don't have access to the above references then


should get you going, even giving you some code to steal.



Cheers

Greg Locock


New here? Try reading these, they might help FAQ731-376
 
Status
Not open for further replies.

Part and Inventory Search

Sponsor

Back
Top