BRIS
Civil/Environmental
- Mar 12, 2003
- 525
We have a complex distribution system which is expected to experience a demand growth of some 50% over the next 10 years. The system has several sources of supply all from desalination plants which pump directly into the system through ground storage tanks. There are also a number of evaluated tanks. We are redesigning one of the pump stations that supplies the system.
My predecessor appointed a sub consultant and asked for a system curve expecting to get a curve of H v Q at the pump station in relation to the change in consumer demand on the system. I would also expected to get a series of growth curves showing system curves at different stages in the growth in demand.
What we have got is a curve of Q v H for the new pump station which is based on constant consumer demand but varying inflow from the other pump stations into the system. It takes a steady state situation and varies Q which automatically changes Q in from the other sources of supply (Qi = Qo) . It assumes that an increase in flow into the system from the new pump station is met by a reduction in flow from the other supply stations. The sub contractor argues that this is a system curve and that it complies precisely with the definition of a system curve - it is a curve of Q v H.
Yes my predecessor should have specified exactly what he wanted not just ask for a system curve.
My view is that on a distribution system the definition of a system curve is a plot of Q V H as seen by the pump station due to variations in consumer demand ?
This may be a case of semantics, but we are now in a position of having developed an operating philosophy on what we thought was a system curve of H v changes in consumer demand - not changes in contribution from other pump stations feeding into the system.
Interesting discussion point ?
My predecessor appointed a sub consultant and asked for a system curve expecting to get a curve of H v Q at the pump station in relation to the change in consumer demand on the system. I would also expected to get a series of growth curves showing system curves at different stages in the growth in demand.
What we have got is a curve of Q v H for the new pump station which is based on constant consumer demand but varying inflow from the other pump stations into the system. It takes a steady state situation and varies Q which automatically changes Q in from the other sources of supply (Qi = Qo) . It assumes that an increase in flow into the system from the new pump station is met by a reduction in flow from the other supply stations. The sub contractor argues that this is a system curve and that it complies precisely with the definition of a system curve - it is a curve of Q v H.
Yes my predecessor should have specified exactly what he wanted not just ask for a system curve.
My view is that on a distribution system the definition of a system curve is a plot of Q V H as seen by the pump station due to variations in consumer demand ?
This may be a case of semantics, but we are now in a position of having developed an operating philosophy on what we thought was a system curve of H v changes in consumer demand - not changes in contribution from other pump stations feeding into the system.
Interesting discussion point ?