@ GG
No Problem with being precise, you are correct, that moving the battery all the way to the rear, may doesn't help with MoI or has the potential to make it worth. In terms of reduction in k, Boris should move it to the CG position, so that the mass*r^2 contribution vanishes, and only the MoI of the battery around it`s own CG remains as contribution to the overall MoI of the car/vehicle.
@Boris
please keep in mind, pay attention to what cibachrome said, you have only part of the k^2 contribution considered in your calculation.
A real physiacl object is more then a "point mass", because it will have a MoI around it's own CG. This MoI will not vanish, even if you place the object closer to the CG of the car.
Maybe look up some infos (Google or textbook) about the "parallel axis theorem" [in some countries known as "Steiner Rule"], to get a better understanding on the subject.
In short the contribution of a object, (let´s say the engine for sake of an example), to the Overall MoI of the body (car) is governed by.
I = I_cm + mr^2 --> I_cm = the MoI of the object (engine) around it's own mass center (CG) + m = mass of object * r^2 = square of the distance/radius of the CG (of the object/engine) to the point of Rotation of the overall system (car).
As you can see, so far, you have only considered the second term.
Now, as we go a bit "off topic" , you have to distinguish between the "transient" part of the response, and here MoI Features quite prominently, and the steady state part. Which in short means how well are your tyres matched to the weight distribution of your car. A front &/or rear heavy car doesn`t has to be US/OS in itself, you just need to find the "right" tyre for this.
So, this can turn a bit into a "Chicken & Egg" Problem, do you have a car, and "tune" (find) the "correct" tyre for it, or do you have a given tyre, and try to "fit your car".
Your initial question, about DI and the Ratio between mass distribution and MoI (radius of gyration), has a large influence about "how fast" and "in which direction" (initial at least) the slipangles of your rear tyres build up.
I think (but could be wrong), it may is helpful for you, to search for "Center of Percussion" and read/mind a bit about this concept/topic.
You will may find only examples which deal with Baseball/cricket bats &/or Tennis racks, but let this not distract you.
Remember, that you can see a steering Input at the front wheels/axle as a "Impulse" to the System (sprung mass), and that this "Impulse" will have to cause a change in "momentum" (linear & angular) of the system (car /sprung mass).
If the linear or angular response to this Impulse dominates, is a function of DI, and this will define how and in which direction your rear slipangles build up.
If you have understood this for the simplified "plane" (2D)Motion (yaw only), you can think about a real car, and how it will respond to this "Impulse" at the front axle. It will become a 3D "problem", where the "Body" (sprungmass of the car) will respond with more then one rotation (combined response of yaw and roll), to the Impulse, and doing so simulatanously. Therefore, it's not only MoI in yaw (z-axis) which enters the equation here, but MoI in roll (x-axis) as well. The instant motion axis can (and often will be) inclined in space, which you Need to consider when using the MoI values measured around the "principal" axis.
But for a start, you may focus on a simpler "plane" (yaw only) Response model, and play/experiment around with this a bit.
Reducing mass, and changing the CG position, as well as trying to lower the CG height, has it's own benefits, and is worth some effort - no question. But you may don't manage to Change your k (or k^2) value significantly with this.
So while lowering m (mass), will change MoI, which has it´s own benefits, it may does not change k at the same time (at least not automatically, it can, but it doesn't has to).
I don't have my copy of Milliken here with me, and I may don't understand correctly what you mean with the CfCr terms, you use, so appologise if I get it wrong. In case they stand for the tyre Cornering Stiffness front and rear, I don't think, that you can alter These values much with "dampers" - alignment (camber,toe) yes
A other "cheap" and simple way worth - IMHO - to consider, is the use of different wheel/rim width, for a given/Chosen tyre.
I'm not talking about "Boy racers" stretching, but you will find, that for a given tyre size, you have usually a 1-1.5" wheel width "window", which you can use to your Advantage, to fine tune handling/Balance, with comparable little effort - but that's all up to you.
If you learn/understand how DI affects your rear tyre slipangle build up, I think you are on your way, and you will know, what you would like to do, and where you want to go with it.
Good luck - it's an interesting, but not "easy" topic.
P.S.: It seems, that you can't change older posts on here, but maybe one of the mods/admins could be kind enough to correct a typo in the above post. In the lower part, of my first post it reads:
because this car has a DI of >1 [b said:
[k^2/(a+b)][/b] = 1.2088]
but it should read:
DI = k^2/(a*b)
Thanks
TC3000