ATSE
Structural
- May 14, 2009
- 594
For a steel water tank standpipe (h=60ft, D = 40ft, high seismic) with mechanical anchorage (J = 3). Code is AWWA D100-11.
Plate tension is in the left right direction (X axis) due to static and seismic hoop stresses.
Plate tension is in the up down direction (Y axis) due to overturning "bending" stresses.
The D100-11 code is silent (or appears so) about combined tension. For any other structure regardless of code, I would combine code-level (ASD) tension using "von Mises" criteria (deviatoric stress), and compare the resulting deviatoric demand with design shear strength = 0.577*Fy / Omega.
It appears like Equation 3-3 is for members, not plates. If I combine tensile stresses, I expect some strong pushback from my fellow engineers and reviewers, since I am not following the code (but instead following mechanics of materials).
This tanks meets the code if combined stresses are not considered.
Plate tension is in the left right direction (X axis) due to static and seismic hoop stresses.
Plate tension is in the up down direction (Y axis) due to overturning "bending" stresses.
The D100-11 code is silent (or appears so) about combined tension. For any other structure regardless of code, I would combine code-level (ASD) tension using "von Mises" criteria (deviatoric stress), and compare the resulting deviatoric demand with design shear strength = 0.577*Fy / Omega.
It appears like Equation 3-3 is for members, not plates. If I combine tensile stresses, I expect some strong pushback from my fellow engineers and reviewers, since I am not following the code (but instead following mechanics of materials).
This tanks meets the code if combined stresses are not considered.