Continue to Site

Eng-Tips is the largest engineering community on the Internet

Intelligent Work Forums for Engineering Professionals

  • Congratulations GregLocock on being selected by the Eng-Tips community for having the most helpful posts in the forums last week. Way to Go!

Torsional elastic modulus 1

Status
Not open for further replies.

Rowland33

Structural
Dec 12, 2000
31
Could anyone give me the fomula for finding the torsional elastic modulus of a rectangular bar. Thanks
 
Replies continue below

Recommended for you

Do you mean the torsional constant, J? If so, the equation is:

J=k*b*t^3

where:

b = width of section
t = thickness of section
k = constant depending on b/t ratio, as follows:

b/t k
1 0.141
1.2 0.166
1.5 0.196
2 0.229
2.5 0.249
3 0.263
4 0.281
5 0.291
infinity 0.333
 
Go to the site below and follow Library -> Beams -> Cross sections -> Rectangle : you'll find what you are looking for. There's a button to display the formulae too.


prex
motori@xcalcs.com
Online tools for structural design
 
I am looking at the Australian Code 1288-1994, Appendix H., it's not the tortional moment of inertia. Maybe an Engineer from Aus can help?
 
I can't find AS1288 in my design references. Can you be more specific re. the Code Title name plus the exact text extract you're looking at. I'm OZ trained and am in OZ currently so I might be able to assist.
Anthony Tugwell
Project Director & Consulting Engineer - just relocated to Australia
 
ADT thanks for responding, my reference is Australian Code AS 1288-1944, Appendix H, pg 98. It is concerning the design of glass fins for a curtain wall. I just have an extract of three pages so can not be any more specific.
The exact text extract is "The value of torsional elastic modulus (G) may be taken as 28.3 GPa for glass fins"
 
Is it likely that you may be referring to the shear modulus (G)?
The shear modulus is used in computing torsional deformation
(twist) of a member.

G = E / 2 / (1 + mu)

E = young's modulus
mu = Poisson's ratio.

Check any book on structural mechanics for the relationships
between torsional moment, torsional constant, G and twist.

Hariharan
 
Rowland,

Modulus of elasticity, G, also known as Modulus of Rigidity.

G= fV/Y
fv= torsional shearing stress(Pa)
Y= gamma, strain in the material

If u r designing glass than 28.3 GPa is correct, upto 30 is fine.

I would suggest u use the G values directly rather than compute from first principles.

Riz

 
Rowland,
If u use formula given by Hariharan than the parameters are as follows:
E = 70KPa
mu= 0.22
Thus G = 28.7GPa
Riz
 
Rowland,
If u use formula given by Hariharan than the parameters are as follows:
E = 70KPa
mu= 0.22 ( for stress parallel to grain )
Thus G = 28.7GPa
Riz
 
Many thanks for your help, I think I can put this one to bed now.
 
Hariharan & Riz are right!
Anthony Tugwell
Project Director & Consulting Engineer - just relocated to Australia
 
Status
Not open for further replies.

Part and Inventory Search

Sponsor