LOKI1983
Mechanical
- Feb 25, 2013
- 32
Hello.
Sorry for the foolish question but I am somehow got lost and feel like cornered in solving a simple problem.
I had attached a picture: the "boomerang" look like thing is a arm which is fixed at A (pin type connection) (allows the arm to rotate around A),in point E we have a hydraulic cylinder, and in point D we have the actual load.Actually when the hydraulic cylinder is applying force to point E, point D is moved horizontally left (in point D we have a wheel which is moved on a flat surface) , while the A is moving the Up (A is attached to a load - in order to avoid further questions point A can move up and down and rotate,right and left is constrained). I am trying to figure out if my hydraulic cylinder can lift the load.My question is: when the hydraulic cylinder is applying the force the point of action where it is: at the intersection of the direction of force (B) on the line AD or at the intersection of the perpendicular on line AD ( point C)?
Thank You.
Sorry for the foolish question but I am somehow got lost and feel like cornered in solving a simple problem.
I had attached a picture: the "boomerang" look like thing is a arm which is fixed at A (pin type connection) (allows the arm to rotate around A),in point E we have a hydraulic cylinder, and in point D we have the actual load.Actually when the hydraulic cylinder is applying force to point E, point D is moved horizontally left (in point D we have a wheel which is moved on a flat surface) , while the A is moving the Up (A is attached to a load - in order to avoid further questions point A can move up and down and rotate,right and left is constrained). I am trying to figure out if my hydraulic cylinder can lift the load.My question is: when the hydraulic cylinder is applying the force the point of action where it is: at the intersection of the direction of force (B) on the line AD or at the intersection of the perpendicular on line AD ( point C)?
Thank You.