Bambie
Electrical
- Mar 31, 2012
- 242
The continuous boiler blow-off system at our plant discharges a constant mass flow of 0.2 kg/s at 6 psig into a lake via 250' of buried 6"nps pipe with a 12:1 drainage slope.
At the lake surface the 6"nps pipe branches into three 3"nps pipes that drop 14' vertically below the lake surface where they are anchored.
Direct contact condensation (water cannon) plagued this design and damaged anchors until a vent was installed in the 6"nps line which depressurized the 3"nps pipes and maintained the steam/water interface at lake surface elevation.
MIC degradation of the buried pipe has resulted in leaks, so rather than replace it, there is a proposal to re-route the 250' of 6"nps pipe 30' above ground and then drop it down into the existing 3"nps distribution lines.
A vent is proposed at the 30' elevation.
My concern is that a 0.2 kg/s steam/condensate mixture descending 30' under gravity and atmospheric pressure could pressurize the 3"nps distribution lines and 'load the water cannons' so to speak.
My question is whether there is any way to predict the static pressure in this downcomer and whether the 3"nps lines could be effectively vented to prevent water cannoning.
Please see the isometric sketch attached.
At the lake surface the 6"nps pipe branches into three 3"nps pipes that drop 14' vertically below the lake surface where they are anchored.
Direct contact condensation (water cannon) plagued this design and damaged anchors until a vent was installed in the 6"nps line which depressurized the 3"nps pipes and maintained the steam/water interface at lake surface elevation.
MIC degradation of the buried pipe has resulted in leaks, so rather than replace it, there is a proposal to re-route the 250' of 6"nps pipe 30' above ground and then drop it down into the existing 3"nps distribution lines.
A vent is proposed at the 30' elevation.
My concern is that a 0.2 kg/s steam/condensate mixture descending 30' under gravity and atmospheric pressure could pressurize the 3"nps distribution lines and 'load the water cannons' so to speak.
My question is whether there is any way to predict the static pressure in this downcomer and whether the 3"nps lines could be effectively vented to prevent water cannoning.
Please see the isometric sketch attached.