atayne
Mechanical
- Nov 14, 2011
- 8
I am attempting to find the angular velocity of a 3D box that is balanced on one of its corners and allowed to fall under the force of gravity alone at the instant the box impacts. Take the simplest case for example where the box is square on all sides and falls in a way that results in one of its faces hitting the ground flush (I believe this would result in the maximum instantaneous angular velocity as it has the furthest to fall in this direction). Once I figure out the simple case, I'll need to extrapolate it to other scenarios where the box is rectangular and the center of gravity is not located dead center.
I don't really know where to start on this because the moment is changing as the box falls and finding the mass moment of inertia for a complex shape such as this appears to be very difficult to do by hand. I know I need to calculate the angular velocity about an axis drawn through the CG and then use the Parallel Axis Theorem to project it down to the floor.
If you guys could get me started thinking about this the correct way, I would feel much better!
See sketch
I don't really know where to start on this because the moment is changing as the box falls and finding the mass moment of inertia for a complex shape such as this appears to be very difficult to do by hand. I know I need to calculate the angular velocity about an axis drawn through the CG and then use the Parallel Axis Theorem to project it down to the floor.
If you guys could get me started thinking about this the correct way, I would feel much better!
See sketch