Vah1D
Mechanical
- Jan 8, 2016
- 26
Hi Everyone,
The first picture (taken from a book titled "Power Mechanisms of Rotational and Cyclic Motions") shows a deep groove & cylindrical roller bearing combination acting is locating-side of a bearing system. The roller bearing supports only radial load and the deep groove ball bearing supports the axial load (hence the radial clearance in the housing around the outer ring of deep groove ball bearing.)
It also (although not very clear) shows a small gap (Z) between the cup (that holds the deep groove) and the cylindrical roller bearing to avoid transmission of any axial load to the roller bearing.
Now the author claims that the deep groove ball bearing can support axial load in both directions. However, I can only see how it can resist axial load when the load is applied to the shaft from right to left. If thrust applied from left to right, then because of the gap between the bearings, I can't see how the deep groove ball bearing can resist any axial load in this situation.
The only possible explanation I can think of is after thrust load is applied (from left to right to the shaft), the Z gap closes and that's when the load will transfer from roller bearing to the ball bearing. But that only happens if the roller bearing outer ring starts to slip in the housing? What am I'm missing?
Another idea (although this will contradict the author) is since the roller bearing has ribs on the right side, it can actually resist some axial load, so the system can resist axial load in both directions, but from left to right only by the roller bearing?
1#
Description from the author about the picture (the first picture is continued on in the second picture)
Thanks!
The first picture (taken from a book titled "Power Mechanisms of Rotational and Cyclic Motions") shows a deep groove & cylindrical roller bearing combination acting is locating-side of a bearing system. The roller bearing supports only radial load and the deep groove ball bearing supports the axial load (hence the radial clearance in the housing around the outer ring of deep groove ball bearing.)
It also (although not very clear) shows a small gap (Z) between the cup (that holds the deep groove) and the cylindrical roller bearing to avoid transmission of any axial load to the roller bearing.
Now the author claims that the deep groove ball bearing can support axial load in both directions. However, I can only see how it can resist axial load when the load is applied to the shaft from right to left. If thrust applied from left to right, then because of the gap between the bearings, I can't see how the deep groove ball bearing can resist any axial load in this situation.
The only possible explanation I can think of is after thrust load is applied (from left to right to the shaft), the Z gap closes and that's when the load will transfer from roller bearing to the ball bearing. But that only happens if the roller bearing outer ring starts to slip in the housing? What am I'm missing?
Another idea (although this will contradict the author) is since the roller bearing has ribs on the right side, it can actually resist some axial load, so the system can resist axial load in both directions, but from left to right only by the roller bearing?
1#
Description from the author about the picture (the first picture is continued on in the second picture)
Thanks!