The "ideal" requirement for camber during cornering is "in general" to compensate for the roll angle in order to keep the contact patch as ideal as possible to the ground. Said simply: if you would have a typical 2° of suspension roll for your type of car you would be looking to compensate for that value. If you run a static negative 1° of camber you would have to compensate on the outside wheel still a remaining 1° and at the inside wheel a 3°(see below later). Typically a McPherson does not have huge camber gains (about -15°/m in heave which roughly equals -0,15°/°roll) which would mean that on the outside wheel you would recapture 3 x -0.15° = -0.45° camber due to roll movement. Let's assume 0.5°. This would leave a remaining 0.5° to be addressed. Your steering system does also increase negative camber with steer angle on the outside wheel (up to a certain lock angle) and one can say that for a rule of thumb for a typical 4 degree caster, 8° KPI steering system the amount of negative camber with 15° wheel angle is about -0,5° extra on the outside wheel. So in high steering lock corners you are arriving at a total camber to road angle of: (2°roll -1°static -0,5vert/roll -0,5°steer) = 0°. So your outside wheel is about correct.
Now bear in mind an important fact: On the outside wheel King Pin Inclination and Caster counteract each other in creating negative camber, however on the inside wheel the do work beautifully together creating Positive camber ....
For the inside wheel you should be recovering 1° more since your static negative camber hurts works in the same way as the roll angle. McPherson suspensions do increase their camber gain in rebound more than in compression (long story). This means that the positive camber recovered in roll will be around 0,75°. The Steering system will however (due to caster and KPI) recover more than twice as much which is about 1,25° positive at about 15° wheel angle. Having found 0.75° and 1,25 ° positive camber at the inside wheel at high lock steering angles one arrives at the following numbers for the inside wheel: (-2°roll - 1° static + 0,75°vert/roll + 1,25°steer) = 1° negative. This means your inside tire still is running with negative camber angle relative to ground but since it is the inside tire it is of lesser importance. If one would like to change this the options are limited:
1) changing static negative camber .. this will hurt the outside tire which is the more important one
2) making camber gains in bump/rebound more significant (which unfortunately many times affects roll center heights and movements)
3) play with KPI & Caster angle layout. Here one needs to bear in mind that what is good for the inside tire is bad for the outside
Usually these kind of trade off studies are done with suspension kinematic programs. It is as you might have guessed not a simple task but all the more rewarding if it works. Food for thought.
Cheers,
dynatune,