mjpetrag
Mechanical
- Oct 16, 2007
- 224
I saw this on a website and wanted to know how true this is.
"To take another example of chloride SCC of austenitic stainless steels, tube and shell heat exchangers are frequently constructed using stainless steel tubes (since these must be thin-walled and corrosion cannot be tolerated) with carbon steel tube plates and shell (since these can be made much thicker to provide a corrosion allowance). Chloride SCC is rarely experienced with this construction. However, it is quite common for an enthusiastic engineer to decide that the replacement heat exchanger should use an “all-stainless” construction to avoid the unsightly corrosion of the carbon steel. The result is frequently a rapid failure of the heat exchanger by SCC or pitting corrosion. This is because the carbon steel adopts a relatively low electrode potential that is well below that required to cause SCC or pitting of austenitic stainless steel, which is thereby protected. When the all-stainless construction is adopted, this unintentional electrochemical protection is lost and failure occurs."
I ask since some of the heat exchangers we have here are all stainless construction and have seen many failures due to Chloride stress corrosion cracking. Can anyone provide technical information for this?
-Mike
"To take another example of chloride SCC of austenitic stainless steels, tube and shell heat exchangers are frequently constructed using stainless steel tubes (since these must be thin-walled and corrosion cannot be tolerated) with carbon steel tube plates and shell (since these can be made much thicker to provide a corrosion allowance). Chloride SCC is rarely experienced with this construction. However, it is quite common for an enthusiastic engineer to decide that the replacement heat exchanger should use an “all-stainless” construction to avoid the unsightly corrosion of the carbon steel. The result is frequently a rapid failure of the heat exchanger by SCC or pitting corrosion. This is because the carbon steel adopts a relatively low electrode potential that is well below that required to cause SCC or pitting of austenitic stainless steel, which is thereby protected. When the all-stainless construction is adopted, this unintentional electrochemical protection is lost and failure occurs."
I ask since some of the heat exchangers we have here are all stainless construction and have seen many failures due to Chloride stress corrosion cracking. Can anyone provide technical information for this?
-Mike