schaplan
Aerospace
- Sep 19, 2013
- 8
We're designing a portable instrument with an embedded computer. It's a computer that gets very hungry for power sometimes, and needs to be powered by batteries at times. We're stuck using off-the-shelf UN38.3 certified batteries at the moment. 18.5V ("5s" or 5-in-series for li-ion cells) is the preferred voltage as it can efficiently be regulated to 16v and happily power the three sub-systems, one of which is the computer. The prototype system should demonstrate the ability to hot-swap batteries, or use two batteries together to extend battery life, as well as be able to charge the batteries in the unit when supplied with external power.
Normally, the entire system will draw about 15W, or close to 1A. We've identified several 50 to 70 Watt-hour battery candidates, which would provide the minimum 3-hour run-time required.
The problem we run into, is the computer can draw significant current in short bursts (less than half a second), and when the battery can not provide that, the computer crashes. We're willing to reduce the computer power in the bios, limiting it to say 20W, but early testing on these settings still shows that it will draw over 6A for very short periods.
The batteries we'd like to use, for the most part, are limited to 4A discharge current.
My background is not electrical, but I have heard of capacitors. Is there a common approach to using capacitors or other components, potentially a cap and an IC, to assist during short periods of high current draw?
We have a set volume for the batteries which somewhat limits us to the 50-70 Wh and 4A discharge rate batteries described above. However, in the unit we have a custom PCB with the battery charging circuit and voltage regulator where we could potentially include additional components to assist the batteries during these times.
Another solution we looked at are employing batteries with higher discharge rates. We'd identified some available graphene li-po batteries that meet the spec, but do not have on-board battery management system and our battery charging circuit does not support the cell balancing cable included with them.
Thank you for any direction you can give on this need. I apologize if this has been posted before; I attempted to search but each situation that came up in results seemed quite different than this.
Normally, the entire system will draw about 15W, or close to 1A. We've identified several 50 to 70 Watt-hour battery candidates, which would provide the minimum 3-hour run-time required.
The problem we run into, is the computer can draw significant current in short bursts (less than half a second), and when the battery can not provide that, the computer crashes. We're willing to reduce the computer power in the bios, limiting it to say 20W, but early testing on these settings still shows that it will draw over 6A for very short periods.
The batteries we'd like to use, for the most part, are limited to 4A discharge current.
My background is not electrical, but I have heard of capacitors. Is there a common approach to using capacitors or other components, potentially a cap and an IC, to assist during short periods of high current draw?
We have a set volume for the batteries which somewhat limits us to the 50-70 Wh and 4A discharge rate batteries described above. However, in the unit we have a custom PCB with the battery charging circuit and voltage regulator where we could potentially include additional components to assist the batteries during these times.
Another solution we looked at are employing batteries with higher discharge rates. We'd identified some available graphene li-po batteries that meet the spec, but do not have on-board battery management system and our battery charging circuit does not support the cell balancing cable included with them.
Thank you for any direction you can give on this need. I apologize if this has been posted before; I attempted to search but each situation that came up in results seemed quite different than this.