Tunalover
Mechanical
- Mar 28, 2002
- 1,179
Folks-
I've been searching high and low for "typical" high-probability positional tolerances for CNC punched and machined clearance holes, machined threaded holes, and machined countersinks in 6061-T6 aluminum sheet and plate. If "Rolls Royces" are on the high dollar end of the scale and if "Ford Escorts" are on the other end of the scale, what can one expect from either? My question supposes that the machines are maintained per the manufacturers' recommended maintenance schedules.
I know this is a broad question. I use the fixed and floating fastener formulas (from ASME Y14.5M-1994) for designing hole patterns but I recently caught flack for designing holes and countersinks that are too big! Our fabricator says the best he can do without raising prices is +/-.005" in-pattern (or pattern-locating). I think that his CNC equipment is doing MUCH better than that. I also think that he simply doesn't KNOW what his equipment is providing him.
Does anyone have figures for positional tolerances of clearance holes, threaded holes, and countersinks deliverable by CNC equipment? Is there any industry standard that CNC machine manufacturers aspire to? I'm aware of ISO 230-97 which only gives the methodology of gaging the machine performance. Maybe much tighter in-pattern tolerances are possible than pattern-locating tolerances?
If anyone can give hard figures I'd be MUCH OBLIGED!
Tunalover
I've been searching high and low for "typical" high-probability positional tolerances for CNC punched and machined clearance holes, machined threaded holes, and machined countersinks in 6061-T6 aluminum sheet and plate. If "Rolls Royces" are on the high dollar end of the scale and if "Ford Escorts" are on the other end of the scale, what can one expect from either? My question supposes that the machines are maintained per the manufacturers' recommended maintenance schedules.
I know this is a broad question. I use the fixed and floating fastener formulas (from ASME Y14.5M-1994) for designing hole patterns but I recently caught flack for designing holes and countersinks that are too big! Our fabricator says the best he can do without raising prices is +/-.005" in-pattern (or pattern-locating). I think that his CNC equipment is doing MUCH better than that. I also think that he simply doesn't KNOW what his equipment is providing him.
Does anyone have figures for positional tolerances of clearance holes, threaded holes, and countersinks deliverable by CNC equipment? Is there any industry standard that CNC machine manufacturers aspire to? I'm aware of ISO 230-97 which only gives the methodology of gaging the machine performance. Maybe much tighter in-pattern tolerances are possible than pattern-locating tolerances?
If anyone can give hard figures I'd be MUCH OBLIGED!
Tunalover