-
1
- #1
GalileoG
Structural
- Feb 17, 2007
- 467
During a luncheon at work, we had several interesting discussions that I thought I would share with you folks:
One of my colleagues said that a concrete edge beam does NOT need to be designed for torsion if you pin the edges and design the secondary beams and the slab for the moment. However, another colleague stated that the above is simply incorrect and that the edge beam must always be designed for torsion, but did not state why. A third colleague said that it all depends on the rebar detailing? As you can imagine, I was left more confused than when the conversation started. I'm curious as to which side everyone here would take in this debate.
The discussion then jumped on to steel. If we have a secondary beam spanning perpendicularly into the primary beam, with the primary beam supported by a column on each of its end, and the connection between the primary and secondary beam is a clip angle, would we design the primary beam for torsion? The point that was raised is that the double clip angle can experience significant rotation/deformation as long as it is not too thick, and thus the end of the secondary beam can be treated as a pin without any significant torsion on the primary beam. Does that make sense to anyone? Because I don't know if I buy it. What about the stiffness of the primary beam, does that play any role?
Ah what the heck, since I'm posting a thread, I might as well ask another question that's been bothering me: I have a reinforced concrete slab (150 mm thick or 6") with a whole bunch of openings. I am worried that my slab will not act as a rigid diaphragm because of all the openings. How can I calculate and prove that my slab can act as a rigid diaphragm? Also, I was told that my slab has to match the rigidity/strength of my shear wall for it to be effective. What is the rational behind that? I do not understand that statement and have never heard it before until recently. How about you guys?
Clansman
One of my colleagues said that a concrete edge beam does NOT need to be designed for torsion if you pin the edges and design the secondary beams and the slab for the moment. However, another colleague stated that the above is simply incorrect and that the edge beam must always be designed for torsion, but did not state why. A third colleague said that it all depends on the rebar detailing? As you can imagine, I was left more confused than when the conversation started. I'm curious as to which side everyone here would take in this debate.
The discussion then jumped on to steel. If we have a secondary beam spanning perpendicularly into the primary beam, with the primary beam supported by a column on each of its end, and the connection between the primary and secondary beam is a clip angle, would we design the primary beam for torsion? The point that was raised is that the double clip angle can experience significant rotation/deformation as long as it is not too thick, and thus the end of the secondary beam can be treated as a pin without any significant torsion on the primary beam. Does that make sense to anyone? Because I don't know if I buy it. What about the stiffness of the primary beam, does that play any role?
Ah what the heck, since I'm posting a thread, I might as well ask another question that's been bothering me: I have a reinforced concrete slab (150 mm thick or 6") with a whole bunch of openings. I am worried that my slab will not act as a rigid diaphragm because of all the openings. How can I calculate and prove that my slab can act as a rigid diaphragm? Also, I was told that my slab has to match the rigidity/strength of my shear wall for it to be effective. What is the rational behind that? I do not understand that statement and have never heard it before until recently. How about you guys?
Clansman