scha0786
Mechanical
- Nov 5, 2011
- 30
Doing a design review of a 90,000ft^2 two story building with DOAS serving chilled beams in classrooms. Currently there is an ERW that has a configuration of: first a dissicant wheel then the heating coil and finally the chilled water coil. The rooms typically have one wall exposed with 70% glass, 30 students and about 8 2'x2' active chilled beams. The outer bank ACBs have a dual coil that can always use hot water. The inner ACBs have only a single coil that is either receiving chilled water or hot water (depending on what the plant is doing).
My concern with the design: There is no way to dehumidify the air going to the chilled beams, cooling coil is after heating coil and the only reheat available is the 3 outer bank ACB in each classroom. Is this a valid concern or am I over thinking this?
My concerns:
-I fear that there is no way to dry out the building during a Monday morning cool down after a long muggy weekend.
-Return air humidity will slowly increase, which in turn will increase the return air dew point and cause the high temp chilled water set point to climb in the mid to lower 60s causing over heating of rooms.
-Rooms will slowly sub cool over time, "cold and clammy feel"
Oh and they have a new Gym and this unit is configured the same way, heating coil and then cooling coil. The dehumidification sequence I got from the engineer is to slow the fan down to 50%. My concern here is with the new wood floor and maintaining a consistent 55% humidity in the gym to prevent wood floor problems.
My concern with the design: There is no way to dehumidify the air going to the chilled beams, cooling coil is after heating coil and the only reheat available is the 3 outer bank ACB in each classroom. Is this a valid concern or am I over thinking this?
My concerns:
-I fear that there is no way to dry out the building during a Monday morning cool down after a long muggy weekend.
-Return air humidity will slowly increase, which in turn will increase the return air dew point and cause the high temp chilled water set point to climb in the mid to lower 60s causing over heating of rooms.
-Rooms will slowly sub cool over time, "cold and clammy feel"
Oh and they have a new Gym and this unit is configured the same way, heating coil and then cooling coil. The dehumidification sequence I got from the engineer is to slow the fan down to 50%. My concern here is with the new wood floor and maintaining a consistent 55% humidity in the gym to prevent wood floor problems.