tbs
Civil/Environmental
- Jun 3, 2002
- 2
I have an unusual problem. I am designing a 10 MGD Lift Station and 30” DIP Force Main that is pumping downhill. I am a licensed engineer and experienced in pipeline design, but pumps and force main systems are not my specialty.
The Details--The proposed 30” DIP epoxy lined force main is 12,000 feet long and will connect to an existing 30” DIP mortar lined force main that is 6,500 feet long which discharges into a gravity line. There is a 17 foot drop from the lift station to the final discharge with an intermediate high point that is 7 feet higher than the lift station. The high point is only 1,800 feet downstream from the lift station. From the highpoint to the discharge there are several intermediate peaks that will prevent typical gravity flow. The pipe is epoxy lined to help prevent corrosion and air/vacuum release valves have been place at the appropriate peaks.
When the pumps are on, the line will be flowing full. When the pumps shut off, air pockets will develop at the peaks in the line. The potential for corrosion at the air pockets is high but has been minimized buy the use of epoxy lined pipe.
The concern is the pump performance. If the pipe remained full when the pumps shut off, the pumps would see a constant head when they came on. Unfortunately that is not the case. The pipe will have several air pockets which will have to be evacuated from the line which will cause the pipe to see highly varying heads and could produce shock waves in the line.
I have investigated two possible solutions to keep the line full when the pumps are off.
Solution 1 was to install a valve on the discharge that would close when the pumps are off thus preventing the line from continuing to discharge by gravity flow. This proved to be a possibility, but the criteria are the valve must be mechanical, no electricity, pneumatic, or hydraulic systems will be accepted by the client, and the failure mode of the valve must be open. Red Valve makes a spring loaded valve that fits the need, but they only make it up to 12”.
Solution 2 is to build a vertical “gooseneck” that will create a highpoint in the line to prevent it from draining. The force main would go vertical out of the ground just prior to the discharge to an elevation that was equal to the highpoint of the line and then turn 180 degrees to go back into the ground and discharge into the gravity line. This solution would create a manmade high that would keep the line full at all times which would prevent corrosion in the line and would allow the pumps to see a constant head when they came on. A decent solution, but no one likes the idea of a 30” DIP Force Main sticking up over 20’ feet in the air.
I have been told by some that pumping down hill in this situation is not a problem. If it is, then I have a hard time believing that this problem has not been encountered before and that with modern technology there is not a better solution than having a 20 foot tower of 30” pipe sticking out of the ground.
Any input would be appreciated.
Thanks
TBS
The Details--The proposed 30” DIP epoxy lined force main is 12,000 feet long and will connect to an existing 30” DIP mortar lined force main that is 6,500 feet long which discharges into a gravity line. There is a 17 foot drop from the lift station to the final discharge with an intermediate high point that is 7 feet higher than the lift station. The high point is only 1,800 feet downstream from the lift station. From the highpoint to the discharge there are several intermediate peaks that will prevent typical gravity flow. The pipe is epoxy lined to help prevent corrosion and air/vacuum release valves have been place at the appropriate peaks.
When the pumps are on, the line will be flowing full. When the pumps shut off, air pockets will develop at the peaks in the line. The potential for corrosion at the air pockets is high but has been minimized buy the use of epoxy lined pipe.
The concern is the pump performance. If the pipe remained full when the pumps shut off, the pumps would see a constant head when they came on. Unfortunately that is not the case. The pipe will have several air pockets which will have to be evacuated from the line which will cause the pipe to see highly varying heads and could produce shock waves in the line.
I have investigated two possible solutions to keep the line full when the pumps are off.
Solution 1 was to install a valve on the discharge that would close when the pumps are off thus preventing the line from continuing to discharge by gravity flow. This proved to be a possibility, but the criteria are the valve must be mechanical, no electricity, pneumatic, or hydraulic systems will be accepted by the client, and the failure mode of the valve must be open. Red Valve makes a spring loaded valve that fits the need, but they only make it up to 12”.
Solution 2 is to build a vertical “gooseneck” that will create a highpoint in the line to prevent it from draining. The force main would go vertical out of the ground just prior to the discharge to an elevation that was equal to the highpoint of the line and then turn 180 degrees to go back into the ground and discharge into the gravity line. This solution would create a manmade high that would keep the line full at all times which would prevent corrosion in the line and would allow the pumps to see a constant head when they came on. A decent solution, but no one likes the idea of a 30” DIP Force Main sticking up over 20’ feet in the air.
I have been told by some that pumping down hill in this situation is not a problem. If it is, then I have a hard time believing that this problem has not been encountered before and that with modern technology there is not a better solution than having a 20 foot tower of 30” pipe sticking out of the ground.
Any input would be appreciated.
Thanks
TBS