506818
Aerospace
- Jun 5, 2014
- 35
I have two stainless tubes which are a distance apart, separated by aluminum (i.e tubes fitted inside aluminum block). One tube has hot fluid, the other has cool fluid to remove heat from the hot tube. I know the mass flow rate, inlet and outlet temperatures for the hot side, and the amount of heat to remove.
Questions:
- How do I calculate the flow rate and temperature inlet on the cold side to remove known heat?
- What impact does running in parallel vs. counterflow have on this heat removal calculation.
My thoughts:
I can calculate the heat transfer coefficient (W/m²K) for both flows using Re, Nu, Pr numbers, etc. However, as this appears to be 2x convection + conduction, unsure on what the dT to plug into the Q=h*A*dT equation should be. My thoughts are that: convective heat on the hot side to the aluminum = conduction in aluminum = convective heat to cold side from aluminum.
Questions:
- How do I calculate the flow rate and temperature inlet on the cold side to remove known heat?
- What impact does running in parallel vs. counterflow have on this heat removal calculation.
My thoughts:
I can calculate the heat transfer coefficient (W/m²K) for both flows using Re, Nu, Pr numbers, etc. However, as this appears to be 2x convection + conduction, unsure on what the dT to plug into the Q=h*A*dT equation should be. My thoughts are that: convective heat on the hot side to the aluminum = conduction in aluminum = convective heat to cold side from aluminum.