abl33
Industrial
- Sep 4, 2020
- 18
I have an application where I need to use an ice bath to store cold for an application requiring a constant feed of cold water just above freezing and while I can determine the mass of the ice required to prevent equipment short-cycling with a variable load, I'm not confident in my ability to determine how much surface area of ice I require in order to balance my incoming heat load and maintain a water temperature just above freezing.
The design will have an unknown length of copper pipe with refrigerant flowing through it so that ice builds up on the outside of the pipe with two ice sensors to ensure a minimum and maximum thickness of ice covering the pipes. There will be two water circuits pulled from this tank that both want water as close to freezing as possible and will each return water with an unknown rate and temperature anywhere from 3GPM to 20GPM with a temperature range between 38F and 70F.
There will be some water movement in the bath, but ideally it would rely on the suction and return of the feeds to draw the water across the ice. I do not know how to best quantify that effect on the thermal transfer between the ice and the water. All that being said, is there any general guideline for how to translate cooling capacity rate of ice as related to the surface area of ice? In this specific case, I am looking to make multiple 60kBTU circuits and need to know how much ice surface area of ice is required to cool the water at 60kBTU.
The design will have an unknown length of copper pipe with refrigerant flowing through it so that ice builds up on the outside of the pipe with two ice sensors to ensure a minimum and maximum thickness of ice covering the pipes. There will be two water circuits pulled from this tank that both want water as close to freezing as possible and will each return water with an unknown rate and temperature anywhere from 3GPM to 20GPM with a temperature range between 38F and 70F.
There will be some water movement in the bath, but ideally it would rely on the suction and return of the feeds to draw the water across the ice. I do not know how to best quantify that effect on the thermal transfer between the ice and the water. All that being said, is there any general guideline for how to translate cooling capacity rate of ice as related to the surface area of ice? In this specific case, I am looking to make multiple 60kBTU circuits and need to know how much ice surface area of ice is required to cool the water at 60kBTU.