Roger.Bryenton
Mechanical
- May 27, 2024
- 4
Hello Engineers, Help Needed on Methane Decay ... Thx
I am researching climate change, and with Covid and a few years, seems foggier that usual. However, from what I can determine, methane, CH4 has a half-life of about 7 years. That means it decays at about 10% per year. The concentration in the atmosphere is slowly increasing. If in year one, the rate of decline is 10%, then it would take about 10% to maintain the roughly constant concentration. Now, what about the CH4 that is there from the year before? It will decline about 9% in its second year.
If I sum the total of declines over, say 21 years, its down to 25% so the overall decline is 75%, correct?
Here's another description. In a dynamic atmospheric model of methane decay to CO2, methane's half life of 7 years means it decays into CO2 at 10%, declining, per year. Thus in order to maintain to roughly steady amount of 1920 parts per billion, in year 1 it will decline 10%. In year 2 it declines about another 9%, year 3 about 8% etc. This assumes it is not constantly refreshed, to maintain the constant concentration.
How much is required each year to stay constant? My mind is a bit foggy after several bouts with Covid, however the answer is germain to our planet's health. 10% new methane a year is a huge flow, and methane's warming effect during year 1 is about 120 times as bad as CO2.
THUS, the first year's decay at 10% is a huge amount. What about the dynamics of the continuing decay from the "2 year old" methane? Doesn't it also have to be replaced in order to maintain a constant methane concentration? Similarly with the 3 year old methane, etc? If it were a "stock" or fixed volume, it would decay to 50% over 7 years.
BUT it holds constant concentration, ie it is a "flow", dynamic, being constantly refreshed while simultaneously decaying at 10% per year. One part of the brain says it is a 10% "refreshment flow",annually while another part of the brain says "account for all the decay, constantly, which approximates, over 14 years, to be 75% decline, which would me an unimaginable massive flow of new methane annually.
What % of the methane concentration is needed to maintain a steady concentration, please? IF it's only 10% per year, what about the decay in year 2, 3 etc? How is that accounted for. Thank you VERY much. Roger
I am researching climate change, and with Covid and a few years, seems foggier that usual. However, from what I can determine, methane, CH4 has a half-life of about 7 years. That means it decays at about 10% per year. The concentration in the atmosphere is slowly increasing. If in year one, the rate of decline is 10%, then it would take about 10% to maintain the roughly constant concentration. Now, what about the CH4 that is there from the year before? It will decline about 9% in its second year.
If I sum the total of declines over, say 21 years, its down to 25% so the overall decline is 75%, correct?
Here's another description. In a dynamic atmospheric model of methane decay to CO2, methane's half life of 7 years means it decays into CO2 at 10%, declining, per year. Thus in order to maintain to roughly steady amount of 1920 parts per billion, in year 1 it will decline 10%. In year 2 it declines about another 9%, year 3 about 8% etc. This assumes it is not constantly refreshed, to maintain the constant concentration.
How much is required each year to stay constant? My mind is a bit foggy after several bouts with Covid, however the answer is germain to our planet's health. 10% new methane a year is a huge flow, and methane's warming effect during year 1 is about 120 times as bad as CO2.
THUS, the first year's decay at 10% is a huge amount. What about the dynamics of the continuing decay from the "2 year old" methane? Doesn't it also have to be replaced in order to maintain a constant methane concentration? Similarly with the 3 year old methane, etc? If it were a "stock" or fixed volume, it would decay to 50% over 7 years.
BUT it holds constant concentration, ie it is a "flow", dynamic, being constantly refreshed while simultaneously decaying at 10% per year. One part of the brain says it is a 10% "refreshment flow",annually while another part of the brain says "account for all the decay, constantly, which approximates, over 14 years, to be 75% decline, which would me an unimaginable massive flow of new methane annually.
What % of the methane concentration is needed to maintain a steady concentration, please? IF it's only 10% per year, what about the decay in year 2, 3 etc? How is that accounted for. Thank you VERY much. Roger