ekelley
Structural
- Mar 26, 2010
- 3
During a luminaire pole submittal review I noticed a fabricator had specified the material for a square HSS as ASTM A500 Gr. B. Rather than listing the yield strength as 46ksi, they indicated it as 55ksi on the drawing and used 55ksi as the yield strength in the calculations. I commented on the error, noting that the element was not structurally sound when using a yield strength of 46 ksi in the calculations, and returned it.
I received the following in response: "We buy the steel to be certified from the mill to have a minimum 55 ksi for the member. It meets the chemical properties of ASTM A500 Gr. B, but is tested to higher yield."
I'm not very happy with the response. I don't know if the typical yield strength is 55 ksi or not. I know the yield performance of this material is not bracketed like an A992 steel would be, but is the performance affected by the higher yield? The resistance factors (or allowable stress factors) specified in the code are based on the probabilistic properties of the material, right? Is using the precise yield strength indicated on a mill certificate a bad idea for design? It seems they are taking a shortcut rather than just sizing the post appropriately. At a minimum, I would request the mill certificate, but I would rather reject it. How would a typical resident engineer know to check that the mill certificate yield strength exceeded the yield strength spec'd for the material? Seems sneaky to me. Has anyone had any experience with this sort of thing?
Thanks!
I received the following in response: "We buy the steel to be certified from the mill to have a minimum 55 ksi for the member. It meets the chemical properties of ASTM A500 Gr. B, but is tested to higher yield."
I'm not very happy with the response. I don't know if the typical yield strength is 55 ksi or not. I know the yield performance of this material is not bracketed like an A992 steel would be, but is the performance affected by the higher yield? The resistance factors (or allowable stress factors) specified in the code are based on the probabilistic properties of the material, right? Is using the precise yield strength indicated on a mill certificate a bad idea for design? It seems they are taking a shortcut rather than just sizing the post appropriately. At a minimum, I would request the mill certificate, but I would rather reject it. How would a typical resident engineer know to check that the mill certificate yield strength exceeded the yield strength spec'd for the material? Seems sneaky to me. Has anyone had any experience with this sort of thing?
Thanks!