wilberz
Structural
- Jul 21, 2015
- 77
from thread
KootK. Please refer to the figure below.
You mentioned above that in few scenarios, there is no net decrease in the moments of the column-beam joints (even when the column base is fixed).. something about #1 where the frame can be stiffer and attract more seismic load. We know that increase in base shear just needs more tranverse ties in the columns.. so what specific scenerio do you mean where there is no net decrease in the moments at the column-beam joints? The figure above shows the moments decrease in the joint so please show how it can remain the same.. unless you mean the load above beams is increased due to increase member sizes or vertical components of seismic movement.. or what specific scenario are you referring to when you mentioned how the frame being stiffer and attracking more load would make the moments at the column-beam joint with fixed base still similar to the one of the left (pinned and bigger moments at the joint)? Thank you.
Sort of. If you design yourself a moment frame with pinned column bases and then fix the bases without changing anything else, the following ought to be true which is in line with your thinking I believe:
1) The brace will be stiffer and will attract more seismic load.
2) Some of the seismic moment previously developed in the beam / column joints will redistributed to the fixed column base joints. Whether or not there is a net decrease in moment at the beam / column joint will depend on which effect dominates (#1 or #2). I would expect a net decrease in most scenarios.
3) The plastic hinge moment that needs to be developed at the beam / column joint will remain unchanged because it depends only on the cross section and material properties of the beam which also will remain unchanged.
4) The seismic load at which a full frame mechanism will be formed will be higher because mechanism formation now requires plastic hinge formation at the column bases as well as the beam / column joints.
KootK. Please refer to the figure below.

You mentioned above that in few scenarios, there is no net decrease in the moments of the column-beam joints (even when the column base is fixed).. something about #1 where the frame can be stiffer and attract more seismic load. We know that increase in base shear just needs more tranverse ties in the columns.. so what specific scenerio do you mean where there is no net decrease in the moments at the column-beam joints? The figure above shows the moments decrease in the joint so please show how it can remain the same.. unless you mean the load above beams is increased due to increase member sizes or vertical components of seismic movement.. or what specific scenario are you referring to when you mentioned how the frame being stiffer and attracking more load would make the moments at the column-beam joint with fixed base still similar to the one of the left (pinned and bigger moments at the joint)? Thank you.