111R
Electrical
- May 4, 2012
- 114
When performing excitation tests on a three phase power transformer, the winding on the middle leg of the core has the lowest excitation current due to the reluctance path being the lowest. While this makes sense to an extent, it's also a bit hard to grasp since in a resistive circuit, the path with the lowest resistance would draw the most current. The way I understand it is that when a set voltage is applied to the core of a transformer, it takes the least current in a low reluctance path to build up an EMF in opposition to the applied voltage.
I've attached an excitation test from a contractor that I'm trying to fully interpret. The test was performed with a Doble M4100 test set on a 138/12.5 kV ▲/Y transformer. I have a few questions in regards to this:
The H1-H2 winding appears to be installed on the middle leg due to the excitation current being the lowest.
Do the inductance measurements seem right? Two windings have identical inductance readings while the third winding is completely different. What would cause this? Are these actual results? It seems unlikely that we would have identical readings down to the 1/100th of a Henry on two different windings. I know most of the inductance comes from the preventive auto.
I understand that the high/low pattern within individual phases is due to the preventive auto bridging two tap changer contacts on odd LTC taps. Can you explain the odd pattern on R13 and R3 on all windings? I've attached a photo of the nameplate, but I don't see what would cause this to be so much lower than any other odd tap on the tapchanger. There is also an associated rise in inductance compared to the normal pattern, but it seems like it should still be consistent.
Thanks for your help.
I've attached an excitation test from a contractor that I'm trying to fully interpret. The test was performed with a Doble M4100 test set on a 138/12.5 kV ▲/Y transformer. I have a few questions in regards to this:
The H1-H2 winding appears to be installed on the middle leg due to the excitation current being the lowest.
Do the inductance measurements seem right? Two windings have identical inductance readings while the third winding is completely different. What would cause this? Are these actual results? It seems unlikely that we would have identical readings down to the 1/100th of a Henry on two different windings. I know most of the inductance comes from the preventive auto.
I understand that the high/low pattern within individual phases is due to the preventive auto bridging two tap changer contacts on odd LTC taps. Can you explain the odd pattern on R13 and R3 on all windings? I've attached a photo of the nameplate, but I don't see what would cause this to be so much lower than any other odd tap on the tapchanger. There is also an associated rise in inductance compared to the normal pattern, but it seems like it should still be consistent.
Thanks for your help.