BjMag
Electrical
- Dec 11, 2021
- 3
I have a bit unusual requirement regarding predicting appropriate time for replacing Li-Ion batteries.
In my application I will use two Li-Ion 18650 batteries (certified capacity 3300mAh) in series that will supply power to a device that draws almost constant 80mA (can vary between 70-90mA). The Device is connected 18 hours a day (or less) in room temperature (during this time the batteries are not connected to any charging or monitoring circuitry). Thus, it is expected that about half the battery capacity has been used. Then the battery is being automatically connected to a charging circuit every day during the remaining time slot of 6 hours. The max charging current available is approx. 500mA which means that fresh batteries should be fully charged in about 3.5 to 4 hours.
The charger circuit will apply the normal Constant Current/Constant Voltage scheme. The circuit (yet to be designed) will be able to measure the voltage before and after the charge (i.e. without the Device connected). I will also be able to monitor the battery cell surface temperature during the charge (as well as during use). The measured values can be received and stored through a Raspberry Pi4B I/O. In addition I could measure the voltage during load a second before I disconnect the Device and I can also measure the voltage a second after connecting the Device (if that is of any help).
I have made the assumption that using these kind of batteries in the specified application using the specified charging method they will last for a pretty long time (maybe 2 years or so). I’m looking for a way to alert the user that it is time to replace the batteries as they are not likely to be fully charged in the 6-hour time slot thus not being able to supply the device with current up to the specified 18 hours. I plan to notify the user with a flashing LED on the Device.
My question: is there a way to reasonably determine this using the measured values over time?
In my application I will use two Li-Ion 18650 batteries (certified capacity 3300mAh) in series that will supply power to a device that draws almost constant 80mA (can vary between 70-90mA). The Device is connected 18 hours a day (or less) in room temperature (during this time the batteries are not connected to any charging or monitoring circuitry). Thus, it is expected that about half the battery capacity has been used. Then the battery is being automatically connected to a charging circuit every day during the remaining time slot of 6 hours. The max charging current available is approx. 500mA which means that fresh batteries should be fully charged in about 3.5 to 4 hours.
The charger circuit will apply the normal Constant Current/Constant Voltage scheme. The circuit (yet to be designed) will be able to measure the voltage before and after the charge (i.e. without the Device connected). I will also be able to monitor the battery cell surface temperature during the charge (as well as during use). The measured values can be received and stored through a Raspberry Pi4B I/O. In addition I could measure the voltage during load a second before I disconnect the Device and I can also measure the voltage a second after connecting the Device (if that is of any help).
I have made the assumption that using these kind of batteries in the specified application using the specified charging method they will last for a pretty long time (maybe 2 years or so). I’m looking for a way to alert the user that it is time to replace the batteries as they are not likely to be fully charged in the 6-hour time slot thus not being able to supply the device with current up to the specified 18 hours. I plan to notify the user with a flashing LED on the Device.
My question: is there a way to reasonably determine this using the measured values over time?