loilfan
Mechanical
- Jan 20, 2015
- 122
Hello,
What is the correct way to determine if a discharge header has sufficient area for multiple relieving PSVs? This assumes negligible back pressure (i.e. short piping length venting to atmosphere).
Example, two PSVs with NPT 2.5 outlets combine into a single discharge header.
Option 1: Use the ODs
Ar=Required Area = 2*PI/4*2.875^2 = 12.98 in^2
Da=Minimum Diameter Pipe = SQRT(12.98*4/PI) = 4.07 in
Therefore, a NPT 4 pipe is required.
Option 2: Use the IDs (assuming Sch 40)
Ar = 2*PI/4*2.469^2 = 9.58 in^2
Da = SQRT(9.58*4/PI)= 3.49 in
Therefore, a NPT 3.5 pipe is required
Option 3: Use the nominal size
Ar = 2*PI/4*2.5^2 = 9.82 in^2
Da = SQRT(9.82*4/PI)= 3.54 in
Therefore, a NPT 4 pipe is required
I could not provide specific guidance on what option to use in API 520 or 521. This NB paper says "Multiple devices discharging into a discharge manifold or header is a common practice. The discharge manifold or header must be sized so the cross-sectional area is equal to or greater than the sum of the discharge cross-sectional areas of all the devices connected to the discharge manifold or header." which leads me to believe that Option 2 is the correct method.
What is the correct way to determine if a discharge header has sufficient area for multiple relieving PSVs? This assumes negligible back pressure (i.e. short piping length venting to atmosphere).
Example, two PSVs with NPT 2.5 outlets combine into a single discharge header.
Option 1: Use the ODs
Ar=Required Area = 2*PI/4*2.875^2 = 12.98 in^2
Da=Minimum Diameter Pipe = SQRT(12.98*4/PI) = 4.07 in
Therefore, a NPT 4 pipe is required.
Option 2: Use the IDs (assuming Sch 40)
Ar = 2*PI/4*2.469^2 = 9.58 in^2
Da = SQRT(9.58*4/PI)= 3.49 in
Therefore, a NPT 3.5 pipe is required
Option 3: Use the nominal size
Ar = 2*PI/4*2.5^2 = 9.82 in^2
Da = SQRT(9.82*4/PI)= 3.54 in
Therefore, a NPT 4 pipe is required
I could not provide specific guidance on what option to use in API 520 or 521. This NB paper says "Multiple devices discharging into a discharge manifold or header is a common practice. The discharge manifold or header must be sized so the cross-sectional area is equal to or greater than the sum of the discharge cross-sectional areas of all the devices connected to the discharge manifold or header." which leads me to believe that Option 2 is the correct method.