Feedyourhead
Mechanical
- Feb 16, 2023
- 14
So we have engineering software that is capable of calculating the effect that the piping has on a relief valve. But how is it doing it? What is engineering theory that would provide an analytical solution to how much a relief valve is affected by pressure loss?
The typical relief valve situation for my application is as follows:
A section of pipe T's off from the system to be protected and has a relief valve at the end. The piping from the T to the relief valve is considered the inlet piping. There is also outlet piping after the relief valve typically straight up like a chimney.
From what I understand is that engineering code recommends no more than 3% pressure loss on the inlet to prevent chattering, and no more than 10% pressure loss on the outlet to prevent too much backpressure. But what about derating the actual capacity of the relief valve with the pressure losses? How is it calculated? How is my software calculating it? Say for example I am able to calculate that there will be a pressure loss of 5 psi in the inlet piping, and that the relief valve is able to pass 400,000 cubic feet per hour at full capacity. What is the new capacity now that there is a 5 psi pressure loss in the inlet piping because it is 100 feet long?
The typical relief valve situation for my application is as follows:
A section of pipe T's off from the system to be protected and has a relief valve at the end. The piping from the T to the relief valve is considered the inlet piping. There is also outlet piping after the relief valve typically straight up like a chimney.
From what I understand is that engineering code recommends no more than 3% pressure loss on the inlet to prevent chattering, and no more than 10% pressure loss on the outlet to prevent too much backpressure. But what about derating the actual capacity of the relief valve with the pressure losses? How is it calculated? How is my software calculating it? Say for example I am able to calculate that there will be a pressure loss of 5 psi in the inlet piping, and that the relief valve is able to pass 400,000 cubic feet per hour at full capacity. What is the new capacity now that there is a 5 psi pressure loss in the inlet piping because it is 100 feet long?