Mr. Skippy
Geotechnical
- Jun 26, 2017
- 10
Attached is a picture showing the site conditions. The bag wall is not acceptable and needs to be replaced. The ground conditions consist of top soil over limestone. There appeared to be some leveling fill, but the corner of the house is resting on limestone rock mass.
My thoughts:
1. Global Stability of the rock mass supporting the corner of the house: The bag wall has no soil behind it and wasn't designed to take any structural loading. I would think that the engineer who designed the foundation of this house considered the subsurface exploration and took into consideration a safe offset distance. I will need to check into this further.
2. Lateral surcharge pressure: I have not done any rough calculations, and I have no testing on the limestone rock mass, and the slope of the cut between the house and the wall is about 45 degrees and about 15 feet way... Tentatively I am aiming to proceed with no surcharge affect from the house on the wall, due to the geometry and material.
3. Height of Wall: The height of the wall would need to be about 8 feet high at least. A Cantilever RC wall would need about 4 to 5 feet of foundation width. This would require, excavating limestone rock, cutting down trees, and cutting material out from around the base of the foundation of the house. This would cause a lot of difficulties and probably underpinning the house.
4. The incline of the R-wall Foundation: This would create complex loading and construction issues.
My plan:
Is to stair step the foundation of a modular block retaining wall, to its max height allowed of 4 feet (Assuming the design allows). Then above that retaining wall set back an appropriate distance construct another 4 foot modular block retaining wall. Using properly designed drainage and geogrid if necessary.
If the assumption that the geometry and material can handle the surcharge of the house, then the goal is really to control the erosion of that slope. In which case stacking modular block retaining walls seems like the way to go.
Any insight would be greatly appreciated.
Thanks
My thoughts:
1. Global Stability of the rock mass supporting the corner of the house: The bag wall has no soil behind it and wasn't designed to take any structural loading. I would think that the engineer who designed the foundation of this house considered the subsurface exploration and took into consideration a safe offset distance. I will need to check into this further.
2. Lateral surcharge pressure: I have not done any rough calculations, and I have no testing on the limestone rock mass, and the slope of the cut between the house and the wall is about 45 degrees and about 15 feet way... Tentatively I am aiming to proceed with no surcharge affect from the house on the wall, due to the geometry and material.
3. Height of Wall: The height of the wall would need to be about 8 feet high at least. A Cantilever RC wall would need about 4 to 5 feet of foundation width. This would require, excavating limestone rock, cutting down trees, and cutting material out from around the base of the foundation of the house. This would cause a lot of difficulties and probably underpinning the house.
4. The incline of the R-wall Foundation: This would create complex loading and construction issues.
My plan:
Is to stair step the foundation of a modular block retaining wall, to its max height allowed of 4 feet (Assuming the design allows). Then above that retaining wall set back an appropriate distance construct another 4 foot modular block retaining wall. Using properly designed drainage and geogrid if necessary.
If the assumption that the geometry and material can handle the surcharge of the house, then the goal is really to control the erosion of that slope. In which case stacking modular block retaining walls seems like the way to go.
Any insight would be greatly appreciated.
Thanks