LSPSCAT
Structural
- Dec 19, 2007
- 123
Risa 3D - Non-Building Structures Webinar
At the 52.19 mark in this video there is a discussion about interpreting the plate element results in comparison to code checks. This particular example was run with Allowable Strength Load Combinations, so the von Mises stress was compared to the yield strength with a factor of safety. (Say 50 ksi steel so .6 x Fy = 30 ksi per the example.)
Now, lets say that one had used Load and Resistance Factor Design such that factored loads had been used in the finite element analysis of the structure. The plates stresses reported are now based on the factored load combinations.
For the limit state of combined stress, considering biaxial bending or combined bending and torsion we would use phi x Fy (0.9 x Fy) and compare that that to the von Mises stress calculated based on factored loads.
Similarly, if we had a limit state of buckling due to compressive loads we would need to determine a value for phi x Fcritical and compare that to the factored compressive stress in the plate.
I want to confirm this is correct interpretation of applying the factored load combination stress results to the current AISC 14th edition code.
I realize the code is more setup to handle discrete building elements (beams, bracing, columns), however, does anyone have any references for using it along side general plate and shell element FEA formulations?
At the 52.19 mark in this video there is a discussion about interpreting the plate element results in comparison to code checks. This particular example was run with Allowable Strength Load Combinations, so the von Mises stress was compared to the yield strength with a factor of safety. (Say 50 ksi steel so .6 x Fy = 30 ksi per the example.)
Now, lets say that one had used Load and Resistance Factor Design such that factored loads had been used in the finite element analysis of the structure. The plates stresses reported are now based on the factored load combinations.
For the limit state of combined stress, considering biaxial bending or combined bending and torsion we would use phi x Fy (0.9 x Fy) and compare that that to the von Mises stress calculated based on factored loads.
Similarly, if we had a limit state of buckling due to compressive loads we would need to determine a value for phi x Fcritical and compare that to the factored compressive stress in the plate.
I want to confirm this is correct interpretation of applying the factored load combination stress results to the current AISC 14th edition code.
I realize the code is more setup to handle discrete building elements (beams, bracing, columns), however, does anyone have any references for using it along side general plate and shell element FEA formulations?