Paulettea
Mechanical
- Sep 28, 2016
- 101
Dear All
I have a very basic question regarding shell thickness equation as per ASME BPVC Sec. VIII-Div.1.
I know from very elementary calculations that the stress in long cylindrical shells under pressure is given by:
S=PR/t
And therefore the minimum thickness is given by:
t=PR/S
where, S is the allowable stress.
However, in VIII-Div.1 UG-27 the minimum thickness is given by:
t=PR/(SE-0.6P).
I can understand that this formula wants to consider the nonlinear state of stress distribution especially when the pressure is high and hence the thickness is high. However, what I do not understand is the origin of that factor 0.6 by which P is multiplied. I tried very much to find an analytical method to derive that coefficient but failed. So, is this number some sort of empirical number or is it found by some trial and error procedure or are there any mathematical analysis behind it?
Please, help me with this or I cannot sleep at all.
Warm Regards
I have a very basic question regarding shell thickness equation as per ASME BPVC Sec. VIII-Div.1.
I know from very elementary calculations that the stress in long cylindrical shells under pressure is given by:
S=PR/t
And therefore the minimum thickness is given by:
t=PR/S
where, S is the allowable stress.
However, in VIII-Div.1 UG-27 the minimum thickness is given by:
t=PR/(SE-0.6P).
I can understand that this formula wants to consider the nonlinear state of stress distribution especially when the pressure is high and hence the thickness is high. However, what I do not understand is the origin of that factor 0.6 by which P is multiplied. I tried very much to find an analytical method to derive that coefficient but failed. So, is this number some sort of empirical number or is it found by some trial and error procedure or are there any mathematical analysis behind it?
Please, help me with this or I cannot sleep at all.
Warm Regards