hkhenson
Aerospace
- Jul 13, 2014
- 18
I know that combined cycle power plants can go just a bit over 60%.
I would like to go that high for space based solar power plants. 60% thermal efficiency with a non-steam topping cycle reduces the size of the radiators. Potassium Rankine may be a good choice. One document makes a case for 54.6% and notes that a better vacuum on the steam condenser would add a percentage point or two. Other candidates for topping cycles include helium Brayton cycle, MHD and thermo-ionic (proposed in the original Boeing studies). There is also the possibility of using supercritical CO2 instead of water/steam. The reason to consider CO2 is the much smaller machine size and good efficiency of supercritical CO2 turbines.
Have I missed something?
Suggestions?
I would like to go that high for space based solar power plants. 60% thermal efficiency with a non-steam topping cycle reduces the size of the radiators. Potassium Rankine may be a good choice. One document makes a case for 54.6% and notes that a better vacuum on the steam condenser would add a percentage point or two. Other candidates for topping cycles include helium Brayton cycle, MHD and thermo-ionic (proposed in the original Boeing studies). There is also the possibility of using supercritical CO2 instead of water/steam. The reason to consider CO2 is the much smaller machine size and good efficiency of supercritical CO2 turbines.
Have I missed something?
Suggestions?