Spark ignition (SI) engines all work on the principle of a turbulent flame front (TFF) consuming the air-fuel charge. A normal combustion event would be considered one where the spark ignites the air fuel mixture (a complex process in itself) and the flame propogates throughout the air-fuel mixture with this turbulent flame front. Skip the next paragraph if you know how stuff burns
I think most people have a pretty good idea of how a TFF works, but lets go through some of the details. First, think of a chamber (say a cube or a disc for simplicty) full of nice calm, still air-fuel mixture. A spark in the middle ignites, and begins to consume the mixture. Ideally, the flame front (in this case a laminar flame front, since the mixture is still) would form a spherical shell, as it progresses. Now, this flame front is propelled by a couple of forces. First, the mixture in the wake of the flame front is obviously heated by the combustion. This heat translates to an increase in pressure. This higher pressure burned gas compresses the mixture ahead of the flame front. Since the volume of the burned gases expands it helps accelerate the flame front. Think of blowing up a ballon. The compression of the end gas also raises its temperature. Flame speeds are higher in higher temperature mixtures.
For a turbulent flame front, consider instead of a calm chamber, a chamber full of turbulent eddies, of all size scales. As the flame front approaches one of these swirling eddies, the flame edge is 'torn' and spun around by the eddy, into fresh mixture. This helps to shred up the flame front, and helps to progress the burn of the mixture. In short, this is really why SI engines work at all, lol.
Now, this burning action is really a race. As you compress the combustible end gas, you get ever closer to the auto-ignition temperature. Auto-ignition is a process by where a series of branching chemical reactions (which mainly all have a very strong dependence on temperature) result in the combustion of a mixture, with no flame front. These reactions begin to oxide the mixture simply due to the thermal energy available from the high temperature. Now don't get me wrong, this is a VERY complex series of chemical reactions, but some of the basics help give a good understanding.
The auto-ignition is very dependent on the time history of the mixture. If you hold the mixture at a low temperature, it may not auto-ignite for a long time. Raise the temperature, and it ignites sooner. So if the TFF takes a long time consuming the mixture, the compression effects of the TFF are present for a longer time, and hence the temp. of the end gas is higher for longer.
If the end gas does auto-ignite before the TFF reaches it, or before the relatively cool cylinder wall quenches the flame, the end gas auto-ignites, or detonates. Now, if one corner of this chamber is the last to receive the flame front, and indeed does detonate, what is the result? The auto-igniting mixture essentially 'explodes' and sends a pressure wave across the chamber at the local speed of sound in the cylinder. This pressure wave is what is heard as 'knock' Oddly enough your ear picks up short pulses of a tone, as a 'knock', and not a ringing sound.
Hopefully this helps a bit, one of the prof's here also has a small program to help you hear how the short duration pulses are heard as knock. I will try and post it soon.
Sorry for the novel, I hope it is somewhat informative
-Rob