iO4
Chemical
- Jun 4, 2022
- 3
Greetings all,
I have gone through almost all the discussions held here and in other forums regarding the valve/fittings pressure drop calculations. I'm currently studying the Crane TP.410, and I have already accessed Hooper & Darby technical papers. I have done hydraulic calculations, and the results are shown in the attached pdf file, along with a simple sketch of the system in question.
I have a few questions, if you don't mind; first of all, I read in two different forums that the pressure loss in the reducer (expansion) is higher than those encountered in a pipe reducer (reduction). However, my calculation showed the opposite as follows:
based on Crane TP.410 for 20"x18" reducer (reduction), the K2 = 0.09228 while for the 20"x18" reducer (expansion) the K = 0.05855. Also, using Hooper's method yields resistance coefficients of 0.05444 and 0.03853, respectively. Before I read those comments, my understanding and preception were that the wall separation and turbulence and the energy utilized by the fluid to force moving through the reduced area should result in a higher K value; I'm not sure if my understanding is correct.
Also, for butterfly valves with sizes larger than 24", can I scale the K value given in Crane TP.410 to the new size? let us say if I have a butterfly valve with a 30" size, can I use K2 = K1/beta^4, where beta = (24/30) since (L/D)eq is constant for all sizes at the same flow condition?
The last question, the pipe schedule is standard, and all fittings are class 150, now in Crane TP.410, page 2-9, the fitting schedule is 40; the question is for the pipe reducer, elbows and WYE connection, which schedule should I use? in my opinion I should stick to the pipe schedule. However, still, I'm not sure if this is right?
I do appreciate your guidance. Thank you all.
I have gone through almost all the discussions held here and in other forums regarding the valve/fittings pressure drop calculations. I'm currently studying the Crane TP.410, and I have already accessed Hooper & Darby technical papers. I have done hydraulic calculations, and the results are shown in the attached pdf file, along with a simple sketch of the system in question.
I have a few questions, if you don't mind; first of all, I read in two different forums that the pressure loss in the reducer (expansion) is higher than those encountered in a pipe reducer (reduction). However, my calculation showed the opposite as follows:
based on Crane TP.410 for 20"x18" reducer (reduction), the K2 = 0.09228 while for the 20"x18" reducer (expansion) the K = 0.05855. Also, using Hooper's method yields resistance coefficients of 0.05444 and 0.03853, respectively. Before I read those comments, my understanding and preception were that the wall separation and turbulence and the energy utilized by the fluid to force moving through the reduced area should result in a higher K value; I'm not sure if my understanding is correct.
Also, for butterfly valves with sizes larger than 24", can I scale the K value given in Crane TP.410 to the new size? let us say if I have a butterfly valve with a 30" size, can I use K2 = K1/beta^4, where beta = (24/30) since (L/D)eq is constant for all sizes at the same flow condition?
The last question, the pipe schedule is standard, and all fittings are class 150, now in Crane TP.410, page 2-9, the fitting schedule is 40; the question is for the pipe reducer, elbows and WYE connection, which schedule should I use? in my opinion I should stick to the pipe schedule. However, still, I'm not sure if this is right?
I do appreciate your guidance. Thank you all.