bugbus
Structural
- Aug 14, 2018
- 502
I have heard conflicting answers to this question before, and I have to say that my background is not in materials but in structural engineering. So my experience with fatigue is less on the theoretical side and more on the code-based side.
Supposing that a steel element is subjected to purely compressive load cycles (i.e. min and max stresses are both compressive), and that there are no residual stresses of any kind in the element (such from welding, hot rolling, plastic deformation, or whatever), is it possible for fatigue cracks to form? I have heard that the answer is "yes", but that the rate is in the order of 100x slower than in tension. However, I have no way of knowing if this is right.
Is this any different, then, to a situation where the stress cycles are in tension, but due to residual compressive stress in the element (such as from peening, or some other effect), the overall stress experienced is still always compressive?
And I suppose the opposite situation is where there is a residual tensile stress in the element, but the stress cycles are purely compressive. At the point under consideration, at least part of the stress cycle occurs in tension. Is it possible for fatigue cracks to form in this situation?
Supposing that a steel element is subjected to purely compressive load cycles (i.e. min and max stresses are both compressive), and that there are no residual stresses of any kind in the element (such from welding, hot rolling, plastic deformation, or whatever), is it possible for fatigue cracks to form? I have heard that the answer is "yes", but that the rate is in the order of 100x slower than in tension. However, I have no way of knowing if this is right.
Is this any different, then, to a situation where the stress cycles are in tension, but due to residual compressive stress in the element (such as from peening, or some other effect), the overall stress experienced is still always compressive?
And I suppose the opposite situation is where there is a residual tensile stress in the element, but the stress cycles are purely compressive. At the point under consideration, at least part of the stress cycle occurs in tension. Is it possible for fatigue cracks to form in this situation?