Tklfserve
Mechanical
- Mar 20, 2008
- 30
This is My Really Hard Question:
I have a 70mm EDF [Electric Ducted Fan] it generates 2.45 kg force at maximum thrust. I then calculate its exhaust efflux velocity to be something like 526 m/s based on an Air density of 1.21kg/m³ to get the same volumetric flow.
Mass=Volume*Density
2.45kgs thrust = 2.45kgs exhausted
2.45kgs=Pi*.07²/4 *Length*1.21 [density of air]
So then it follows: The length=526 meters
or that the flow is 526m/s
For my project: I need to know how far back from its exhaust. Is a distance where I can see an exhaust air velocity 1/10 or 10% of this jet efflux. {As I wish to Scale/Calculate the EDF Size up and down and play with varying the exit velocities in a number of different configuration's and vary distances [limited scope] to a attached cube of 10cmx10cmx10cm and Cd of 1.05 and see what force it has on it negatively.
How do I come up with a 'simple' formula to work this out mathematically???
I have a 70mm EDF [Electric Ducted Fan] it generates 2.45 kg force at maximum thrust. I then calculate its exhaust efflux velocity to be something like 526 m/s based on an Air density of 1.21kg/m³ to get the same volumetric flow.
Mass=Volume*Density
2.45kgs thrust = 2.45kgs exhausted
2.45kgs=Pi*.07²/4 *Length*1.21 [density of air]
So then it follows: The length=526 meters
or that the flow is 526m/s
For my project: I need to know how far back from its exhaust. Is a distance where I can see an exhaust air velocity 1/10 or 10% of this jet efflux. {As I wish to Scale/Calculate the EDF Size up and down and play with varying the exit velocities in a number of different configuration's and vary distances [limited scope] to a attached cube of 10cmx10cmx10cm and Cd of 1.05 and see what force it has on it negatively.
How do I come up with a 'simple' formula to work this out mathematically???