SteelCrane
Structural
- Oct 16, 2024
- 5
Can someone explain how RISA-3D calculates Plate Principal Stresses? Specifically, how does it derive σ[sub]x[/sub], σ[sub]y[/sub], and τ[sub]xy[/sub] for use in the Mohr's Circle calculations that lead to σ[sub]1[/sub], σ[sub]2[/sub], τ[sub]max[/sub], and σ[sub]Von-Mises[/sub]? The methodology is described here. The Plate Forces and Plate Principal Stresses for a 2.25" thick plate output by RISA-3D are:
Here's what I've tried:
f[sub]ax[/sub] = F[sub]x[/sub] / t[sub]pl[/sub] = -1.377 ksi
f[sub]ay[/sub] = F[sub]y[/sub] / t[sub]pl[/sub] = 1.311 ksi
f[sub]bx[/sub] = 6*M[sub]x[/sub] / t[sub]pl[/sub][sup]2[/sup] = 17.399 ksi (+ at top)
f[sub]by[/sub] = 6*M[sub]y[/sub] / t[sub]pl[/sub][sup]2[/sup] = 30.229 ksi (+ at top)
f[sub]bxy (warp)[/sub] = 6*M[sub]xy[/sub] / t[sub]pl[/sub][sup]2[/sup] = -4.077 ksi
f[sub]xy[/sub] = F[sub]xy[/sub] / t[sub]pl[/sub] = 0.186 ksi
f[sub]xz[/sub] = Q[sub]x[/sub] / t[sub]pl[/sub] = 1.382 ksi
f[sub]yz[/sub] = Q[sub]y[/sub] / t[sub]pl[/sub] = 6.548 ksi
Attempt #1:
σ[sub]x[/sub] = f[sub]ax[/sub] + f[sub]bx[/sub] + f[sub]bxy (warp)[/sub]
σ[sub]y[/sub] = f[sub]ay[/sub] + f[sub]by[/sub] + f[sub]bxy (warp)[/sub]
τ[sub]xy[/sub] = max of:
Resulting error: 17% for σ[sub]1[/sub], 17% for σ[sub]2[/sub], 17% for τ[sub]max[/sub]
Attempt #2:
σ[sub]x[/sub] = f[sub]ax[/sub] + f[sub]bx[/sub]
σ[sub]y[/sub] = f[sub]ay[/sub] + f[sub]by[/sub]
τ[sub]xy[/sub] = max of:
Resulting error: 5% for σ[sub]1[/sub], -10% for σ[sub]2[/sub], 17% for τ[sub]max[/sub]
Attempt #3:
σ[sub]x[/sub] = f[sub]ax[/sub] + f[sub]bx[/sub]
σ[sub]y[/sub] = f[sub]ay[/sub] + f[sub]by[/sub]
τ[sub]xy[/sub] = f[sub]xy[/sub]
Resulting error: -3% for σ[sub]1[/sub], 6% for σ[sub]2[/sub], -11% for τ[sub]max[/sub]
Attempt #4: at this point, I gave up and backsolved the RISA-3D Principal Stress results to find σ[sub]x[/sub], σ[sub]y[/sub], and τ[sub]xy[/sub], and it led to this:
σ[sub]x[/sub] = f[sub]ax[/sub] + f[sub]bx[/sub] (excluding warping) = 16.02 ksi
σ[sub]y[/sub] = f[sub]ay[/sub] + f[sub]by[/sub] (excluding warping) = 31.54 ksi
τ[sub]xy[/sub] = 3.89 ksi; a number I can't derive using any combination of F[sub]xy[/sub], Q[sub]x[/sub], and/or Q[sub]y[/sub]
Resulting error: 0% for σ[sub]1[/sub], 0% for σ[sub]2[/sub], 0% for τ[sub]max[/sub]
Given that f[sub]xy[/sub] = 0.186 ksi, f[sub]xz[/sub] = 1.382 ksi, and f[sub]yz[/sub] = 6.548 ksi, how did it come up with 3.888 ksi? And why would the warping moment be excluded?
Thanks for your help!
Here's what I've tried:
f[sub]ax[/sub] = F[sub]x[/sub] / t[sub]pl[/sub] = -1.377 ksi
f[sub]ay[/sub] = F[sub]y[/sub] / t[sub]pl[/sub] = 1.311 ksi
f[sub]bx[/sub] = 6*M[sub]x[/sub] / t[sub]pl[/sub][sup]2[/sup] = 17.399 ksi (+ at top)
f[sub]by[/sub] = 6*M[sub]y[/sub] / t[sub]pl[/sub][sup]2[/sup] = 30.229 ksi (+ at top)
f[sub]bxy (warp)[/sub] = 6*M[sub]xy[/sub] / t[sub]pl[/sub][sup]2[/sup] = -4.077 ksi
f[sub]xy[/sub] = F[sub]xy[/sub] / t[sub]pl[/sub] = 0.186 ksi
f[sub]xz[/sub] = Q[sub]x[/sub] / t[sub]pl[/sub] = 1.382 ksi
f[sub]yz[/sub] = Q[sub]y[/sub] / t[sub]pl[/sub] = 6.548 ksi
Attempt #1:
σ[sub]x[/sub] = f[sub]ax[/sub] + f[sub]bx[/sub] + f[sub]bxy (warp)[/sub]
σ[sub]y[/sub] = f[sub]ay[/sub] + f[sub]by[/sub] + f[sub]bxy (warp)[/sub]
τ[sub]xy[/sub] = max of:
{f[sub]xy[/sub] and f[sub]xz[/sub] resolved}
{f[sub]xy[/sub] and f[sub]yz[/sub] resolved}
Resulting error: 17% for σ[sub]1[/sub], 17% for σ[sub]2[/sub], 17% for τ[sub]max[/sub]
Attempt #2:
σ[sub]x[/sub] = f[sub]ax[/sub] + f[sub]bx[/sub]
σ[sub]y[/sub] = f[sub]ay[/sub] + f[sub]by[/sub]
τ[sub]xy[/sub] = max of:
{f[sub]xy[/sub] and f[sub]xz[/sub] resolved}
{f[sub]xy[/sub] and f[sub]yz[/sub] resolved}
Resulting error: 5% for σ[sub]1[/sub], -10% for σ[sub]2[/sub], 17% for τ[sub]max[/sub]
Attempt #3:
σ[sub]x[/sub] = f[sub]ax[/sub] + f[sub]bx[/sub]
σ[sub]y[/sub] = f[sub]ay[/sub] + f[sub]by[/sub]
τ[sub]xy[/sub] = f[sub]xy[/sub]
Resulting error: -3% for σ[sub]1[/sub], 6% for σ[sub]2[/sub], -11% for τ[sub]max[/sub]
Attempt #4: at this point, I gave up and backsolved the RISA-3D Principal Stress results to find σ[sub]x[/sub], σ[sub]y[/sub], and τ[sub]xy[/sub], and it led to this:
σ[sub]x[/sub] = f[sub]ax[/sub] + f[sub]bx[/sub] (excluding warping) = 16.02 ksi
σ[sub]y[/sub] = f[sub]ay[/sub] + f[sub]by[/sub] (excluding warping) = 31.54 ksi
τ[sub]xy[/sub] = 3.89 ksi; a number I can't derive using any combination of F[sub]xy[/sub], Q[sub]x[/sub], and/or Q[sub]y[/sub]
Resulting error: 0% for σ[sub]1[/sub], 0% for σ[sub]2[/sub], 0% for τ[sub]max[/sub]
Given that f[sub]xy[/sub] = 0.186 ksi, f[sub]xz[/sub] = 1.382 ksi, and f[sub]yz[/sub] = 6.548 ksi, how did it come up with 3.888 ksi? And why would the warping moment be excluded?
Thanks for your help!