Windward
Mechanical
- Dec 25, 2002
- 181
To capture the leaking oil and gas until it has been stopped, would a gas lift pump work? There is about 40% methane by mass in the leak. This high percentage of gas would create a very powerful gas lift.
Direct the leak -that is, after the oil/gas has left the wellhead and is in the water at the 5000 foot depth (in other words, I am not suggesting using gas lift in the well itself) - into the open bottom end of a pipe running down to the leak from a salvage vessel.
Once this flow starts moving up the pipe, the highly pressurized methane will continuously expand because the pressure above the mixture is constantly falling. This will reduce the average density of the mixture in the pipe. At steady state flow, it will be much lower than the density of the seawater outside of the pipe.
It would be a giant chimney but with a much greater driving force than if the fluids were gases only, because of the much greater densities and the much greater difference in those densities. If the average density in the pipe is 4/5 that of seawater, the driving force at the bottom of the pipe would be more than 400 psi.
The oil/gas/water mixture will exit the pipe at high velocity at the salvage vessel, perfect for separating the liquid from the gas in a cyclone.
No outside power needed, equipment far simpler and cheaper than what they have been trying.
I know that word - CLATHRATES. They will plug up the flow! But will they, with 400 psi driving it? And if they are a problem, do what they are doing with tophat and put some methanol into it, or some warm water. Not hard when we are looking at the complete destruction of marine life in the Gulf of Mexico and the consequences of that.
Direct the leak -that is, after the oil/gas has left the wellhead and is in the water at the 5000 foot depth (in other words, I am not suggesting using gas lift in the well itself) - into the open bottom end of a pipe running down to the leak from a salvage vessel.
Once this flow starts moving up the pipe, the highly pressurized methane will continuously expand because the pressure above the mixture is constantly falling. This will reduce the average density of the mixture in the pipe. At steady state flow, it will be much lower than the density of the seawater outside of the pipe.
It would be a giant chimney but with a much greater driving force than if the fluids were gases only, because of the much greater densities and the much greater difference in those densities. If the average density in the pipe is 4/5 that of seawater, the driving force at the bottom of the pipe would be more than 400 psi.
The oil/gas/water mixture will exit the pipe at high velocity at the salvage vessel, perfect for separating the liquid from the gas in a cyclone.
No outside power needed, equipment far simpler and cheaper than what they have been trying.
I know that word - CLATHRATES. They will plug up the flow! But will they, with 400 psi driving it? And if they are a problem, do what they are doing with tophat and put some methanol into it, or some warm water. Not hard when we are looking at the complete destruction of marine life in the Gulf of Mexico and the consequences of that.