sgs114
Structural
- Oct 7, 2013
- 33
Hello,
I have a question in regards to load application for a building with vertical combinations of lateral force resisting systems. My building is 6 stories with buckling restrained braced frames on levels 2-6 and CMU walls at the base. My question is in regards to the transfer of overturning forces at Level 2. Per ASCE 12.2.3.1: For the design of the lower system, the design coefficients for the lower system shall be used. Forces transferred from the upper system to the lower system shall be increased by multiplying by the ratio of the higher response modification coefficient to the lower response modification coefficient.
My interpretation of this is that I multiply the forces to my lateral force resisting system at the first level by the ratio of my R-values (8/5). This would basically include collector beams at the 2nd level, and shear values into the wall.
Pilasters support the columns of the BRBF at the first level. My tension and compression forces would not need to be multiplied by (8/5) because the pilasters are common to the different framing systems. The design of the pilasters is covered by ASCE 12.2.4 which states structural members common to different framing systems used to resist seismic forces in any direction shall be designed using the detailing requirements of Chapter 12 required by the highest response modification coefficient (R) of the connected framing system.
There is an example in the 2015 IBC Seismic Design Manual which has a similar circumstance to what I am describing. They use the omega for the upper system, however there is no mention of the scaling of forces based on the R-values. The fact they omit it, leads me to my line of thinking. Of course it would be ideal if they just stated the scaling of forces by the ratio of the R-values is not required, but that would be too easy.
Anyone encountered this? Anyone have a different interpretation?
Thanks,
SGS
I have a question in regards to load application for a building with vertical combinations of lateral force resisting systems. My building is 6 stories with buckling restrained braced frames on levels 2-6 and CMU walls at the base. My question is in regards to the transfer of overturning forces at Level 2. Per ASCE 12.2.3.1: For the design of the lower system, the design coefficients for the lower system shall be used. Forces transferred from the upper system to the lower system shall be increased by multiplying by the ratio of the higher response modification coefficient to the lower response modification coefficient.
My interpretation of this is that I multiply the forces to my lateral force resisting system at the first level by the ratio of my R-values (8/5). This would basically include collector beams at the 2nd level, and shear values into the wall.
Pilasters support the columns of the BRBF at the first level. My tension and compression forces would not need to be multiplied by (8/5) because the pilasters are common to the different framing systems. The design of the pilasters is covered by ASCE 12.2.4 which states structural members common to different framing systems used to resist seismic forces in any direction shall be designed using the detailing requirements of Chapter 12 required by the highest response modification coefficient (R) of the connected framing system.
There is an example in the 2015 IBC Seismic Design Manual which has a similar circumstance to what I am describing. They use the omega for the upper system, however there is no mention of the scaling of forces based on the R-values. The fact they omit it, leads me to my line of thinking. Of course it would be ideal if they just stated the scaling of forces by the ratio of the R-values is not required, but that would be too easy.
Anyone encountered this? Anyone have a different interpretation?
Thanks,
SGS