tc7
Mechanical
- Mar 17, 2003
- 387
This question regards engine compression testers and the effect Schrader valve location has on accuracy of compression readings.
Background: typical automotive shop style compression testers consist of a pressure gauge attached to a flexible tube (typical ~16-inches long) with an adapter at its opposite end which threads into the spark plug hole. Higher quality gauge brands such as Snap-on or MAC have a Schrader valve located in the adapter end of the tube closest to the spark plug hole while other lower cost models have the valve located at the opposite end of the tube, adjacent to the gauge.
Does this difference of valve position make any difference in the accuracy of compression readings?
Some professional mechanics would argue that if the Schrader valve is located at the gauge, the entire volume of the 16-inch long adapter tube adds to the combustion chamber volume and would reduce the resulting compression readings (for the sake of this question let's say that simple compression ratio of an engine is based on the relationship, CR = (Vd + Vc)/Vc where Vd = displacement volume, the volume inside the cylinder displaced by the piston from the beginning of the compression stroke to the end of the stroke and Vc = clearance volume, the volume of the space in the cylinder left at the end of the compression stroke.) So any volume added by the flexible tube connected at the spark pug hole would accrue to the Vc term and somewhat diminish the overall CR and reduce gauge readings accordingly; this would be much more pronounced on small 2-stroke engines.
Consequently they (i.e., mechanics and techs) declare that when the Schrader valve is located at the spark plug end of the tube, no additional volume is added to the clearance volume and compression readings will be most accurate. This makes no sense to me. My contention is that when the engine is cranked over and pressure builds sufficiently to lift the Schrader valve, (at ~3-4psi) then the pressure pathway is open to the flexible tube and the tube volume then necessarily becomes part of the clearance volume just the same as mentioned above, so there should be NO difference in gauge readings regardless of where the Schrader valve is located.
Hoping for truth-tellers to offer expert opinions, technical dissertations and/or criticisms. All input gladly invited and thank you very much.
Background: typical automotive shop style compression testers consist of a pressure gauge attached to a flexible tube (typical ~16-inches long) with an adapter at its opposite end which threads into the spark plug hole. Higher quality gauge brands such as Snap-on or MAC have a Schrader valve located in the adapter end of the tube closest to the spark plug hole while other lower cost models have the valve located at the opposite end of the tube, adjacent to the gauge.
Does this difference of valve position make any difference in the accuracy of compression readings?
Some professional mechanics would argue that if the Schrader valve is located at the gauge, the entire volume of the 16-inch long adapter tube adds to the combustion chamber volume and would reduce the resulting compression readings (for the sake of this question let's say that simple compression ratio of an engine is based on the relationship, CR = (Vd + Vc)/Vc where Vd = displacement volume, the volume inside the cylinder displaced by the piston from the beginning of the compression stroke to the end of the stroke and Vc = clearance volume, the volume of the space in the cylinder left at the end of the compression stroke.) So any volume added by the flexible tube connected at the spark pug hole would accrue to the Vc term and somewhat diminish the overall CR and reduce gauge readings accordingly; this would be much more pronounced on small 2-stroke engines.
Consequently they (i.e., mechanics and techs) declare that when the Schrader valve is located at the spark plug end of the tube, no additional volume is added to the clearance volume and compression readings will be most accurate. This makes no sense to me. My contention is that when the engine is cranked over and pressure builds sufficiently to lift the Schrader valve, (at ~3-4psi) then the pressure pathway is open to the flexible tube and the tube volume then necessarily becomes part of the clearance volume just the same as mentioned above, so there should be NO difference in gauge readings regardless of where the Schrader valve is located.
Hoping for truth-tellers to offer expert opinions, technical dissertations and/or criticisms. All input gladly invited and thank you very much.