shane21
Nuclear
- Jul 3, 2015
- 81
I understand that pure water that's being aerated will only take up just so much dissolved oxygen (DO) and that that depends on the temperature of the water. I see ranges of 14 ppm at close to freezing and around 6 ppm at 50 C as normal maximums.
I understand, too, that you can temporarily super saturate the water, like via electrolysis, to well above those levels, then over x number of hours, depending on whether it's being agitated or not, it'll inevitably drop back down to normal saturation levels for its given temperature.
I see tons of, what I'd call, nano bubbles, almost like smoke in the water, from electrolysis rising up and accumulating near and spreading out across just under the water surface, which I assume are the O, and larger bubbles, I assume are H, breaking the surface directly above emitter.
Please correct me if any of my assumptions above are incorrect or incomplete to fully understanding.
My question is; If I have a pump inlet pipe near the surface in the thick of those nano bubbles of oxygen and suck them into an accumulator or expansion tank that's being pressured up to 80PSI, that water then would stay, for as long as it's there under pressure, at that higher super saturated DO level, yes?
And, when I later spray it out through a nozzle into air directly from that pressurized tank to a surface a foot away, what would you guess of how much of that higher saturation DO % in the water would be lost to the air and not still retained in the water spray mist hitting surface a foot away?
IOW's, lets say we'd sucked in and started at 30ppm DO super saturated water under pressure and normal saturation for water was 10ppm for our temperature, how much, would you guess, would still be in the water that hit the surface a foot away and not already lost in the foot of air after it came out of the nozzle? Assume, too, that nozzle, if it makes any difference, was emitting that DO super saturated water at 50-100 microns.
Thank you for any thoughts.
- Shane
I understand, too, that you can temporarily super saturate the water, like via electrolysis, to well above those levels, then over x number of hours, depending on whether it's being agitated or not, it'll inevitably drop back down to normal saturation levels for its given temperature.
I see tons of, what I'd call, nano bubbles, almost like smoke in the water, from electrolysis rising up and accumulating near and spreading out across just under the water surface, which I assume are the O, and larger bubbles, I assume are H, breaking the surface directly above emitter.
Please correct me if any of my assumptions above are incorrect or incomplete to fully understanding.
My question is; If I have a pump inlet pipe near the surface in the thick of those nano bubbles of oxygen and suck them into an accumulator or expansion tank that's being pressured up to 80PSI, that water then would stay, for as long as it's there under pressure, at that higher super saturated DO level, yes?
And, when I later spray it out through a nozzle into air directly from that pressurized tank to a surface a foot away, what would you guess of how much of that higher saturation DO % in the water would be lost to the air and not still retained in the water spray mist hitting surface a foot away?
IOW's, lets say we'd sucked in and started at 30ppm DO super saturated water under pressure and normal saturation for water was 10ppm for our temperature, how much, would you guess, would still be in the water that hit the surface a foot away and not already lost in the foot of air after it came out of the nozzle? Assume, too, that nozzle, if it makes any difference, was emitting that DO super saturated water at 50-100 microns.
Thank you for any thoughts.
- Shane