-
1
- #1
DurableEfficientGood
Civil/Environmental
- Jan 24, 2022
- 45
The main thing I want to know is whether heavy-duty tri-level bunk beds will overload the floor. There is currently a severe housing shortage in a not-insignificant part of the country and worldwide.
Let's say in a hypothetical (and slightly somewhat realistic) scenario that the housing shortage gets so severe that people have to sleep in any indoor dry room (including living rooms, dining rooms that are not part of the kitchen, and foyers) they can find. Since all the dry rooms have already been occupied by multiple other sleepers each, they now have to resort to having only bunk beds in all bedrooms. Of course, having that many of people in any property unit is currently illegal due to timely evacuation under current fire laws, but let's say that it's been waived for this scenario. Let's also say that none of the buildings have been reinforced for this, but meet all other codes and are maintained in great condition.
The minimum load (unknown if that means rated or design limit) for "sleeping rooms" (according to the IBC) is 30 psf. Let's say that the weight of the heavy-duty steel king-size triple bunk bed is 400 lbs (very high estimate), all 3 king-size mattresses are each 180 lbs (highest amount for commercially produced ones), and that all 3 mattress topping sets are comprehensive and are each 30 pounds (extremely high estimate). This means that the bed setup has an overall empty operating weight of 1030 pounds, which is the same as the curb weight of a 4-seater golf cart. A king size bed has dimensions of 76 inches by 80 inches.
Let's also give an aisle on one side of the bed so that people can get on without passing through other beds. Let's make the aisle have the width as that in a school bus, which is 12 inches. However, the aisle is shared between facing beds, so that the aisle width per unit cell is only half that. Assume that each bed corner support post is 2 inches by 2 inches (fairly small estimate). That gives a bedset unit cell of 86 inches by 84 inches, which is an area of 7,224 in^2 = 50.16667 sqft.
Let's say that everyone who sleeps in the bed is the heaviest person who is healthy. The tallest height for a healthy person is 6'6", the heaviest sex for any given height is male, and the heaviest weight for 6'6" is 230 pounds. That means everyone sleeping in the bed is an extremely muscular (but not insanely, because being too muscular is unhealthy) 6'6" tall male. 2 of these men are able to fit with plenty of space remaining in a queen size bed, while 3 of them cannot fit in it without one turning his body or sleeping on top. So, 3 of these men sleeping on every king-size mattress was chosen because they give the greatest density within a standard size while being able to totally fit inside. The weight of clothing and shoes are insignificant, so they will be ignored here. The total weight of all men on the bed is 2070 lbs. This gives a total system bed weight of 3100 pounds, which is the heavy-duty bed can definitely support. This means each unit cell has a night average load concentration of 61.794 psf. Let's also say that they do not have to work and genuinely enjoy sleeping with each other during free time (and they all rapidly become best friends forever within a week from that), so they spend an average of 20 hours laying in bed, 12 cumulative of them being sleep, for every calendar day including weekends and holidays.
If all dry rooms (including bedrooms) were loaded to a 20-hour average of 61.794 psf and all wet rooms loaded to a 24-hour average of 40 psf, both in every calendar day, in a well-maintained, light wooden-framed multi-storey building that was built to the minimum standard (30 psf for bedrooms and 40 psf for other dry rooms) in a location that is seismically stable, has little wind, and has little snow, will it have a not-insignificant chance (e.g., greater than one in a million chance of collapsing within any given year) by itself of causing the bedroom floors to pancake on top of each other? Will it even have a not-insignificant chance of causing the entire building to collapse? Given that it's well maintained and located in a geographically easy place, external factors such as natural disasters, water damage, erosion, and termite damage will not be a thing here. The only factor remaining will be structural. Also, this is way different from college students crowding together and dancing in a room because there are severe impact loads and significant resonance there but no impact loads here.
Let's say in a hypothetical (and slightly somewhat realistic) scenario that the housing shortage gets so severe that people have to sleep in any indoor dry room (including living rooms, dining rooms that are not part of the kitchen, and foyers) they can find. Since all the dry rooms have already been occupied by multiple other sleepers each, they now have to resort to having only bunk beds in all bedrooms. Of course, having that many of people in any property unit is currently illegal due to timely evacuation under current fire laws, but let's say that it's been waived for this scenario. Let's also say that none of the buildings have been reinforced for this, but meet all other codes and are maintained in great condition.
The minimum load (unknown if that means rated or design limit) for "sleeping rooms" (according to the IBC) is 30 psf. Let's say that the weight of the heavy-duty steel king-size triple bunk bed is 400 lbs (very high estimate), all 3 king-size mattresses are each 180 lbs (highest amount for commercially produced ones), and that all 3 mattress topping sets are comprehensive and are each 30 pounds (extremely high estimate). This means that the bed setup has an overall empty operating weight of 1030 pounds, which is the same as the curb weight of a 4-seater golf cart. A king size bed has dimensions of 76 inches by 80 inches.
Let's also give an aisle on one side of the bed so that people can get on without passing through other beds. Let's make the aisle have the width as that in a school bus, which is 12 inches. However, the aisle is shared between facing beds, so that the aisle width per unit cell is only half that. Assume that each bed corner support post is 2 inches by 2 inches (fairly small estimate). That gives a bedset unit cell of 86 inches by 84 inches, which is an area of 7,224 in^2 = 50.16667 sqft.
Let's say that everyone who sleeps in the bed is the heaviest person who is healthy. The tallest height for a healthy person is 6'6", the heaviest sex for any given height is male, and the heaviest weight for 6'6" is 230 pounds. That means everyone sleeping in the bed is an extremely muscular (but not insanely, because being too muscular is unhealthy) 6'6" tall male. 2 of these men are able to fit with plenty of space remaining in a queen size bed, while 3 of them cannot fit in it without one turning his body or sleeping on top. So, 3 of these men sleeping on every king-size mattress was chosen because they give the greatest density within a standard size while being able to totally fit inside. The weight of clothing and shoes are insignificant, so they will be ignored here. The total weight of all men on the bed is 2070 lbs. This gives a total system bed weight of 3100 pounds, which is the heavy-duty bed can definitely support. This means each unit cell has a night average load concentration of 61.794 psf. Let's also say that they do not have to work and genuinely enjoy sleeping with each other during free time (and they all rapidly become best friends forever within a week from that), so they spend an average of 20 hours laying in bed, 12 cumulative of them being sleep, for every calendar day including weekends and holidays.
If all dry rooms (including bedrooms) were loaded to a 20-hour average of 61.794 psf and all wet rooms loaded to a 24-hour average of 40 psf, both in every calendar day, in a well-maintained, light wooden-framed multi-storey building that was built to the minimum standard (30 psf for bedrooms and 40 psf for other dry rooms) in a location that is seismically stable, has little wind, and has little snow, will it have a not-insignificant chance (e.g., greater than one in a million chance of collapsing within any given year) by itself of causing the bedroom floors to pancake on top of each other? Will it even have a not-insignificant chance of causing the entire building to collapse? Given that it's well maintained and located in a geographically easy place, external factors such as natural disasters, water damage, erosion, and termite damage will not be a thing here. The only factor remaining will be structural. Also, this is way different from college students crowding together and dancing in a room because there are severe impact loads and significant resonance there but no impact loads here.