gwideman, given your assumed shear failure plane with the PT bar crossing it, tension in the bar would create shear friction, a clamping action tending to keep the two interfaces in contact. If the bar was detensioned, this would tend to reduce the shear friction and increase the likelihood of failure. Because the bar was in an ungrouted duct, the bar itself would offer little resistance to a shear failure, and given the other elements in the vicinity of the joint tending to reduce the effective area resisting shear, such as the 8" drain pipe and other ungrouted PT ducts, removing tension in the bar could cause failure.
I assume the bar was being detensioned because the PT was primarily required for the transport operation. Once the girder was seated on the pier, and compression introduced into member 11, the need for the PT, for the sake of strengthening member 11, would become unnecessary. We don't know if the hydraulic jack operator was just starting the detentioning process or was nearing its completion. It is possible that he was at the end of the detensioning process when the bridge failed.
Additional comment: There does not appear to be any actual joint reinforcement of the type one would find in a bridge designed to resist seismic forces. This type of reinforcement would have helped confine the concrete in this high stress zone, making it more ductile and less prone to a catastrophic failure. The innovative design, the lack of redundancy and the high stress concentration at the interface between the deck and diagonal would have made joint reinforcement a prudent choice. It would have added little to the cost of the design while providing a substantially more robust structure.